УДК 622.323

.....

CALCULATION OF INDICATORS OF A PLANE-PARALLEL FILTRATION IN A FRACTURED-POROUS FORMATION AT ELASTIC-WATER-PRESSURE MODE

Шарнов Александр Иванович Кандидат технических наук, доцент, доцент кафедры машин и оборудования нефтяных и газовых промыслов, Армавирский механико-технологический институт (филиал), Кубанский государственный технологический университет a.i.sharnov@mail.ru	Sharnov Alexander Ivanovich Ph.D., associate Professor, Associate Professor of the Department of machinery and equipment of oil and gas fields, Armavir Institute of mechanics and technology (branch), Kuban state technological University a.i.sharnov@mail.ru
Аннотация. Приведены результаты исследования плоско-па- раллельной фильтрации в трещиновато-пористом пласте, раз- рабатываемом совершенной по характеру и степени вскрытия прямолинейной галереей при упруго-водонапорном режиме.	Annotation. The results of a study of plane- parallel filtration in a fractured-porous for- mation developed by a rectilinear gallery with a perfect character and degree of opening un- der the elastic-water-pressure regime are pre- sented.
Ключевые спова: расчет фильтрация пласт трешина блок	Keywords: calculation, filtration, formation,

коллектор, совершенная, характер, степень, вскрытие, упруго- стаск, block, reservoir, perfect, character, deводонапорный, режим, галерея.

gree, opening, elastic-water pressure, mode, gallery.

дной из основных задач разработки нефтяных пластов с тем или иным типом коллектора является обеспечение при помощи методов подземной гидравлики прогноза поведения во времени показателей разработки: давления, дебита, накопленной добычи.

Отмеченные задачи, довольно успешно исследованы для залежей с пористыми коллекторами ввиду наличия решений соответствующих гидродинамических задач, в том числе, задач линейной фильтрации.

Вместе с тем, нельзя считать достаточно исследованными аналогичные задачи для нефтяных месторождений с трещиновато-пористыми коллекторами.

Исходя из изложенного, настоящая работа посвящена исследованию плоско-параллельной фильтрации в трещиновато-пористом пласте, разрабатываемом прямолинейными галереями, совершенными по характеру и степени вскрытия.

Функции давлений в системах блоков и трещин среды описываются системой дифференциальных уравнений вида [1]:

$$\frac{\partial^2 \psi_1}{\partial \xi^2} + \alpha (\psi_2 - \psi_1) = k_0 \omega \frac{\partial \psi_1}{\partial \tau};$$

$$\frac{\partial^2 \psi_2}{\partial \xi^2} - \alpha (\psi_2 - \psi_1) = \frac{\partial \psi_2}{\partial \tau}.$$
(1)

Здесь в целях большей общности введены следующие обозначения:

$$\xi = \frac{x}{l}, \ \tau = \frac{k_2 t}{\mu \cdot l^2 \cdot \beta_2^*}, \ \psi_i(\xi, \tau) = \frac{P_0 - p_i(\xi, \tau)}{P_0 - P_c}, \ \omega = \frac{\beta_1^*}{\beta_2^*}, \ k_0 = \frac{k_2}{k_1}, \ \lambda = \frac{\alpha}{k_0},$$

 $p_i(\xi, \tau), P_0, P_c$ – соответственно текущее, начальное пластовое и постоянное забойное давления. где

 $\beta_1^* \mu \beta_2^*, k_1 \mu k_2$ – осредненные в окрестностях данной точки уругоемкости и проницаемости в средах, µ – вязкость жидкости, t – время, α – коэффициент, характеризующий интенсивность обмена жидкости между средами. Индексы в функциях давления и параметрах пласта относятся соответственно к системам блоков (i = 1) и трещин (i = 2).

Опубликован ряд работ, в которых решались краевые задачи теории фильтрации при различных допущениях по упрощению системы (1). Так, например, пренебрегая изменением давления по координате расстояния в блоках породы, авторами [2, 3] система (1) заменена системой вида:

$$\lambda(\psi_2 - \psi_1) = \omega \frac{\partial \psi_1}{\partial \tau};$$

$$\nabla^2 \psi_2 = \omega \frac{\partial \psi_1}{\partial \tau} + \frac{\partial \psi_1}{\partial \tau}.$$
(2)

Выявим, каково влияние усечения полной системы уравнений (1) на результаты расчета показателей разработки пластов с двойной пористостью. С этой целью перепишем систему (1) в следующем виде:

$$\lambda(\psi_2 - \psi_1) = \omega \frac{\partial \psi_1}{\partial \tau};$$

$$\nabla^2 \psi_2 - \lambda(\psi_2 - \psi_1) = \frac{\partial \psi_2}{\partial \tau}.$$
(3)

Подставив выражение:

$$\psi_1 = \psi_2 + \frac{1}{\lambda} \left(\frac{\partial \psi_2}{\partial \tau} - \nabla^2 \psi_2 \right), \ \nabla^2 = \frac{\partial^2}{\partial \xi^2}, \tag{4}$$

найденное из первого уравнения системы (3), во второе, получим:

$$\frac{\omega}{\lambda} \cdot \frac{\partial}{\partial \tau} \left(\frac{\partial^2 \psi_2}{\partial \xi^2} - \frac{\partial \psi_2}{\partial \tau} \right) + \frac{\partial^2 \psi_2}{\partial \xi^2} = (1 + \omega) \frac{\partial \psi_2}{\partial \tau}.$$
(5)

При ω = 0 уравнение (5) переходит в обычное уравнение пьезопроводности. Подставив выражение (4) во второе уравнение системы (1), подучим:

$$\frac{\partial^2}{\partial \xi^2} \left(\frac{k_0 \omega + 1}{\alpha} \cdot \frac{\partial \psi_2}{\partial \tau} + E \psi_2 \right) = \frac{1}{\alpha} \cdot \frac{\partial^4 \psi_2}{\partial \xi^4} + \frac{\partial}{\partial \tau} \left[\frac{\omega}{\lambda} \cdot \frac{\partial \psi_2}{\partial \tau} + (1 + \omega) \psi_2 \right], \quad E = 1 + \frac{1}{k_0}.$$
(6)

Пренебрегая в (6) производной выше второго порядка по координате ξ уравнению (6) можно придать вид:

$$\frac{\partial^2}{\partial \xi^2} \left(\frac{k_0 \omega + 1}{\alpha} + E \psi_2 \right) = \frac{\partial}{\partial \tau} \left[\frac{k_0 \omega}{\alpha} \cdot \frac{\partial \psi_2}{\partial \tau} + (1 + \omega) \psi_2 \right].$$
(7)

Как следует из (7) условие $\omega = 0$, являясь необходимым, уже не является достаточным условием для получения из (7) уравнения пьезопроводности для пористой среды. Для этого необходимы еще предельные условия $\alpha = k_0 \rightarrow \infty$.

Для оценки степени точности описания процесса фильтрации жидкости в среде с двойной пористостью уравнений (5), (7) по сравнению с полной системой (1) решим ниже поставленную первую краевую задачу плоско параллельного потока жидкости.

Пусть полосовая залежь, первоначально находящаяся в невозмущенном состоянии под давлением P0, ограничена двумя параллельными друг другу галереями, совершенными по характеру и степени вскрытия. На одной из галерей с началом отсчета, перпендикулярной к ней оси абсцисс, удерживается перепад давления $\varphi_0(\tau)$, а на второй, отстоящей от первой на расстоянии l_1 , перепад давления

меняется по закону $\varphi_1(\tau)$.

Требуется определить изменение давления в любой точке пласта в любой момент времени.

Математически задача сводится к интегрированию соответственно систем (1) и (2) уравнения (7) при следующих начальных и граничных условиях:

$$\psi_i(\xi,0) = 0; \tag{8}$$

$$\frac{\partial}{\partial \tau} \psi_i(\xi, 0) = 0; \tag{9}$$

$$\psi_i(0,\tau) = \varphi_0(\tau); \tag{10}$$

$$\psi_i(\xi_1,\tau) = \varphi_1(\tau), \ \xi = \frac{l_1}{l}.$$
 (11)

Для решения задачи применим к системам и дополнительным условиям интегральное синус-преобразование Фурье [5, 6]:

$$\overline{\psi}_{i}(n,\tau) = \int_{0}^{\xi_{1}} \psi_{1}(\xi,\tau) \sin(u_{n}\xi) d\xi, \ u_{n} = \frac{n\pi}{\xi_{1}}, i = 1,2$$
(12)

и преобразование Лапласа:

$$\overline{\overline{\psi}_i}(n,S) = \int_0^{\infty} \overline{\psi}_i(n,\tau) \cdot \exp(-S\tau) d\tau , \quad i = 1,2$$
(13)

Преобразования (12), (13) позволяют освободиться в (1) от вторых производных по координате расстояния и от первых производных по координате времени. Тогда решение задачи в трансформантах Фурье и Лапласа представится в виде:

$$\overline{\overline{\psi}}_{i}(n,S) = \frac{u_{n}}{k_{0}\omega} \cdot \frac{\left[\Phi_{0}(S) - (-1)^{n}\Phi(S)\right]\left(u_{n}^{2} + f_{i}(S) + \alpha E\right)}{\left[S + S_{1}(n)\right]\left[S + S_{2}(n)\right]},$$
(14)

٦.

где

$$\begin{split} \varPhi_{i}(S) &= \int_{0}^{\infty} \varphi_{i}(\tau) \exp(-S\tau) d\tau, \ i = 0, 1, \\ f_{1}(S) &= S, \ f_{2}(S) = k_{0} \omega S, \ f_{1,2}(n) = \delta_{1}(n) \pm \delta_{2}(n) \\ \delta_{1}(n) &= \left[(k_{0} \omega + 1) u_{n}^{2} + (\omega + 1) \alpha \right] (2k_{0} \omega)^{-1}, \\ \delta_{2}(n) &= \left[\delta_{1}^{2}(n) - u_{n}^{2} (u_{n}^{2} + \alpha E) (k_{0} \omega)^{-1} \right]^{1/2}. \end{split}$$

Осуществляя переход к оригиналу (14) по второй теореме разложения, а затем по формуле обращения Фурье, окончательный вид решения можно получить в нижеследующей форме сходящегося ряда [7, 8]:

$$\psi_{i}(\xi,\tau) = \frac{1}{k_{0}\omega\xi_{1}}\sum_{n=1}^{\infty} \frac{u_{n}\sin(u_{n}\cdot\xi)}{\delta_{2}(n)} \int_{0}^{\tau} [\varphi_{0}(\tau-\theta) - (-1)^{n}\varphi_{1}(\tau-\theta] \times \sum_{i=1}^{2} (-1)^{i+1}\exp[-S_{i}(n)\theta] \{u_{n}^{2} + f_{i}[S_{i}(n)] + \alpha E\} \alpha \theta$$
(15)

Полученная формула (15), являясь точным решением задачи (1) и (8)–(11), описывает процесс понижения давления в произвольных вертикальных сечениях сред с двойной пористостью в любой момент времени их разработки.

Ввиду того, что проводником жидкости к галерее является система трещин среды, решения других задач по усеченным системам (2) и (7) целесообразно провести только для функций давления в системе трещин среды.

Применение интегральных преобразований (12), (13) к системе (2), (8)–(12) приводит к следующей трансформанте для функций понижения давления в системе трещин среды:

$$\overline{\overline{\psi}}_{i}(n,S) = u_{n}\left(S + \frac{\alpha}{k_{0}\omega}\right) \cdot \frac{\Phi_{0}(S) - (-1)^{n}\Phi(S)}{\left[S + A_{1}(n)\right]\left[S + A_{2}(n)\right]},$$
(16)

где

$$A_{1,2}(n) = a_1(n) \pm a_2(n)$$
,

$$a_{1}(n) = \frac{1}{2} \left(u_{n}^{2} + \alpha \frac{\omega + 1}{k_{0} \omega} \right), \ a_{2}(n) = \left[a_{1}^{2}(n) - u_{n}^{2} \cdot \frac{\alpha}{k_{0} \omega} \right]^{1/2}$$

Оригиналом трансформанты (16) явится выражение:

$$\psi_{2}(\xi,\tau) = \frac{1}{\xi_{1}} \sum_{n=1}^{\infty} \frac{u_{n}}{a_{2}(n)} \sin(u_{n}\xi) \int_{0}^{\tau} \left[\varphi_{0}(\tau-\theta) - (-1)^{n} \varphi_{1}(\tau-\theta) \right] \times \left\{ \left(A_{2}(n) - \frac{\lambda}{\omega} \exp\left[-A_{2}(u)\theta \right] - \left(A_{1}(n) - \frac{\lambda}{\omega} \right) \exp\left[-A_{1}(n)\theta \right] \right\} \right\} d\theta.$$
(17)

Выражение (17), являясь точным решением системы (2) приближенно описывает изменение во времени давления в произвольных вертикальных сечениях системы трещин трещиновато-пористого пласта.

Следует отметить, что предложенный здесь способ решения системы (1) более эффективен для проведения численных расчетов по сравнению с [4].

Наконец, решением задачи (7)-(11) явится выражение:

$$\psi_{2}(\xi,\tau) = \frac{k_{0}\omega+1}{k_{0}\omega\cdot\xi_{1}}\sum_{n=1}^{\infty}\frac{u_{n}\sin(u_{n}\xi)}{e_{2}(n)}\int_{0}^{\tau}\left[\varphi_{0}(\tau-\theta)-(-1)^{n}\varphi(\tau-\theta)\right]\times$$

$$\times\left\{\left(B_{2}(n)-\frac{\alpha E}{k_{0}\omega+1}\exp(-B_{2}(n)\theta)-\left(B_{1}(n)-\frac{\alpha E}{k_{0}\omega+1}\right)\exp\exp(-B_{2}(n)\theta)\right)\right\}d\theta,$$
(18)

где

$$B_{1,2}(n) = b_1(n) \mp b_2(n),$$

$$b_1(n) = \left[(k_0 \omega + 1) u_n^2 + (\omega + 1) \alpha \right] (2k_0 \omega)^{-1}, \ b_2(n) = \left[e_1^2(n) - u_n^2 \omega^{-1} \lambda E \right]^{1/2}.$$

Анализ полученных решений (15), (17) и (18) проведен на примере расчета показателей разработки нефтяных месторождений с трещиновато-пористыми коллекторами при упруговодонапорном режиме.

Пусть у стенки галереи удерживается постоянное давление P_c, а на внешней границе пласта (ξ = 1) удерживается давление P₀ равное начальному статическому:

$$\varphi_0 = 1, \ \varphi_1 = 0 \tag{19}$$

При условиях (19) раскрытие интеграла (15) не представляет особого труда, и решение задачи преобразуется к виду:

$$\psi_{i}(\xi,\tau) = 1 - \xi - \bar{k} \sum_{n=1}^{\infty} \frac{u_{n}}{\delta_{2}(n)} T_{i}(n;\tau) \sin(u_{n}\xi), \quad i = 1,2, \quad (20)$$

где

$$T_{1}(n;\tau) = \frac{1}{k_{0}\omega} \left\{ \left(\frac{u_{n}^{2} + \alpha E}{S_{1}(n)} - 1 \right) \exp\left[-S_{1}(n)\tau \right] \right\} - \left(\frac{u_{n}^{2} + \alpha E}{S_{2}(n)} - 1 \right) \exp\left[-S_{2}(n)\tau \right]$$
$$T_{2}(n;\tau) = \sum_{i=1}^{2} (-1)^{i+1} \left(\frac{u_{n}^{2} + \alpha E}{k_{0}\omega S_{i}(n)} - 1 \right) \exp\left[-S_{i}(n)\tau \right].$$

Формулы (17) и (18) при условиях (19) примут вид:

$$\psi_{2}(\xi,\tau) = 1 - \xi - \sum_{n=1}^{\infty} \frac{u_{n}}{a_{2}(n)} T_{3}(n;\tau) \sin(u_{n}\xi) , \qquad (21)$$

$$\psi_{2}(\xi,\tau) = 1 - \xi - \frac{k_{0}\omega + 1}{k_{0}\omega} \sum_{n=1}^{\infty} \frac{u_{n}}{s_{2}(n)} T_{4}(n;\tau) \sin(u_{n}\xi), \qquad (22)$$

где

$$T_{3}(n;\tau) = \sum_{i=1}^{2} (-1)^{i} \left(1 - \frac{\lambda}{\omega A_{i}(n)} \right) \exp\left[-A_{i}(n)\tau \right],$$
$$T_{4}(n;\tau) = \sum_{i=1}^{2} (-1)^{i} \left(1 - \frac{\alpha E}{(k_{0}\omega + 1)B_{i}(n)} \right) \exp\left[-B_{i}(n)\tau \right].$$

Отметим, что соответствующие решения для пористой среды имеют вид:

$$\psi(\xi,\tau) \equiv \frac{P_0 - p(\xi,\tau)}{P_0 - P_c} = 1 - \xi - \frac{2}{\pi\xi_1} \sum_{n=1}^{\infty} \frac{1}{n} \sin \frac{n\pi\xi}{\xi_1} \exp(-u_n^2 \tau) .$$
(23)

Согласно формулам (20), (21)–(23) нетрудно выписать формулы расхода жидкости:

$$q_2(\xi,\tau) = -\frac{\partial \psi_2}{\partial \xi}, \ q_1(\xi,\tau) = -\frac{1}{k_0} \frac{\partial \psi_1}{\partial \xi},$$

$$q_{i}(\xi,\tau) = -\frac{\mu l q_{i}^{*}}{k_{2}(P_{0} - P_{c})},$$
(24)

где q_i^* - текущий расход жидкости через произвольное вертикальное сечение пласта двойной пористости:

$$q_{2}(\xi,\tau) = \frac{1}{k_{0}} + \frac{1}{k_{0}} \sum_{n=1}^{\infty} \frac{u_{n}^{2}}{\delta_{2}(n)} T_{1}(n;\tau) \cos u_{n}\xi, \qquad (25)$$

$$q_{2}(\xi,\tau) = 1 + \sum_{n=1}^{\infty} \frac{u_{n}^{2}}{\delta_{2}(n)} T_{2}(n;\tau) \cos u_{n}\xi , \qquad (26)$$

$$q_{2}(\xi,\tau) = 1 + \sum_{n=1}^{\infty} \frac{u_{n}^{2}}{a_{2}(n)} T_{3}(n;\tau) \cos u_{n}\xi, \qquad (27)$$

$$q_{2}(\xi,\tau) = 1 + \sum_{n=1}^{\infty} \frac{u_{n}^{2}}{\sigma_{2}(n)} T_{4}(n;\tau) \cos u_{n}\xi, \qquad (28)$$

и пористого пласта:

$$q_{2}(\xi,\tau) = 1 + \frac{\pi^{2}}{\xi_{1}^{2}} \sum_{n=1}^{\infty} \exp\left(-u_{n}^{2};\tau\right) \cos u_{n}\xi .$$
⁽²⁹⁾

Для определения суммарного расхода жидкости из фиксированного сечения, пласта:

$$Q(\xi,\tau) = \int_{0}^{\tau} q(\xi,\theta) d\theta, \qquad (30)$$

необходимо в правых частях формул (25)–(29) первое слагаемое умножить на τ , выражение $exp(-x\tau)$ под знаком суммирования заменить выражением $x^{-1}[1 - exp(-x\tau)]$.

По полученным в работе формулам понижения давления, текущего и суммарного расхода жидкости при упруго-водонапорном режиме произведены численные расчеты, графические результаты которых представлены на рисунках 1–4.

Из анализа расчетов следует, что для стабилизации давления на всех вертикальных сечениях пласта с двойной пористостью потребуется значительно больше времени, чем в пористой среде».

Причиной этому является тот факт, что помимо стабилизации давления в системе высокопроницаемых трещин происходит также стабилизация давления в системе низкопроницаемых блоков среды. Причем начало стабилизации давления в системе блоков зависит в основном от величины отношения проницаемостей трещин и блоков k₀.

Рисунок 1 – Зависимость понижения давления от времени на разных сечениях (ξ) пористого (ψ), системы блоков (ψ1) и трещин (ψ2) трещиновато-пористого пластов, разрабатываемых галереей при k₀ = 1,25; ω = 0,1; λ = 10

Рисунок 2 – Зависимость понижения давления от времени системе блоков (ψ1, ψ1') и трещин (ψ2, ψ2') и относительная погрешность их определения по полной и усеченной моделям трищиновато-пористого пласта на сечениях ξ = 0,1 при k₀ = 1,5; ω = 0,1; λ = 10

0,2

0,1

0 + 0

τ

0,3

Рисунок 3 – Зависимость понижения давления от времени системе блоков и трещин на сечениях $\xi = 0,1$ трещиновато-пористого пласта при $k_0 = 1,1,$ где кривые 1, 2 при $\omega = 0,1$ и $\lambda = 10$; кривые 1', 2' при $\omega = 0,01$ и $\lambda = 10$; кривые 3, 3' при $\omega = 0,1$ и $\lambda = 1;$ кривая 4 – пористый пласт

Рисунок 4 – Зависимость текущего дебита прямолинейной галереи от времени в трещиновато-пористом при ω = 0,1 и λ = 10 (кривые 1 – 4) соответственно для k = 1,1; 1,25; 1,5; 5 и пористом (кривая 5) пластах

Усечённость системы уравнений и величина отношения проницаемостей трещин и блоков существенно влияет на изменение давления в блоках среды, а в ранний период разработки сильно отражается и в системе трещин среды. С ростом времени разработки погрешность усеченной системы становится незначительной, менее 2 %. Усеченность системы, величина k0 существенно влияет и на изменение дебита галереи.

Литература

1. Баренблатт Г.И., Желтов Ю.П., Кочина И.Н. Об основных представлениях теории фильтрации однородных жидкостей в трещиноватых породах // ПММ. – 1960. – Т. 24. – Вып. 5. – С. 852–864.

2. Авакян Э.А. Некоторые приближенные решения задач фильтрации в трещиновато-пористой среде // Изв. АН СССР. МЖГ. – 1967. – № 4. – С. 103–113.

3. Багир-заде С.Н. Приток однородной жидкости к галерее в трещиновато-пористом пласте // Азерб. нефт. хоз. – 1972. – № 7. – С. 22–25.

4. Асадов А.Ш., Адамян Г.И., Багир-заде С.Н. Численное решение задач линейной фильтрации в гетерогенных средах // Изв. вузов. Нефть и газ. – 1982. – № 8. – С. 47–52.

5. Шарнов А.И. Фильтрация к скважине в гетерогенном пласте двойной пористости // Булатовские чтения. – 2018. – Т. 2. – Ч. 2. – С. 222–231.

6. Шарнов А.И. Основные задачи фильтрации жидкости к совершенной скважине в неоднородном по проницаемости пласте // В сборнике: Научный потенциал вуза – производству и образованию. Сборник статей по материалам I Международной научно-практической конференции, посвященной 100-летию Кубанского государственного технологического университета и 60-летию Армавирского механико-технологического института. – Краснодар : Изд-во КубГТУ, 2019. – С. 102–110.

7. Градштейн И.С., Рыжик И.М. Таблицы интегралов, сумм, рядов и произведений. – М. : Наука, 1971. – С. 1108.

8. Янке Е., Эмде Ф., Лёш Ф. Специальные функции. – М. : Наука, 1977. – 344 с.

References

1. Barenblatt G.I., Zheltov Yu.P., Kochina I.N. On the main representations of the theory of filtration of homogeneous liquids in fractured rocks // PMM. – 1960. – Vol. 24. – Issue 5. – P. 852–864.

2. Avakian E.A. Some approximate solutions of filtration problems in a fractured-porous medium // Izv. AN SSSR. MZHG. – 1967. – № 4. – P. 103–113.

3. Bagir-zade S.N. flow of homogeneous liquid to the gallery in a fractured-porous formation // Azerbaijan oil and gas farm. – 1972. – № 7. – P. 22–25.

4. Asadov A.Sh., Adamyan G.I., Bagir-zade S.N. Numerical solution of linear filtration problems in heterogeneous media // Izv. vuzov. Oil and gas. – 1982. – № 8. – P. 47–52.

5. Sharnov A.I. Filtration to a well in a heterogeneous layer of the double porosity // Bulatovskie readings. – 2018. – Vol. 2. – Part 2. – P. 222–231.

6. Sharnov A.I. Main problems of liquid filtration to a modern well in a non-uniform permeability reservoir in the collection: Scientific potential of the University – production and education. Collection of articles based on the materials of the I International scientific and practical conference dedicated to the 100th anniversary of the Kuban state technological University and the 60th anniversary of the Armavir Institute of mechanics and technology. – Krasnodar Publishing house of KubSTU, 2019. – P. 102–110.

7. Gradshtein I.S., Ryzhik I.M. Tables of integrals, sums, series and products. - M. : Nauka, 1971. - P. 1108.

8. Janke E., Emde F., Lesh F. Special functions. - M. : Nauka, 1977. - 344 p.