УДК 622.279.72

СОВРЕМЕННЫЕ МЕТОДЫ БОРЬБЫ С ГИДРАТООБРАЗОВАНИЕМ НА ГАЗОВЫХ МЕСТОРОЖДЕНИЯХ

MODERN METHODS OF DEALING WITH HYDRATE FORMATION ON THE GAS FIELDS

Савенок Ольга Вадимовна

доктор технических наук, профессор кафедры Нефтегазового дела имени профессора Г.Т. Вартумяна, Кубанский государственный технологический университет olgasavenok@mail.ru

Поварова Лариса Валерьевна

кандидат химических наук, доцент, доцент кафедры химии, Кубанский государственный технологический университет larispv08@gmail.com

Альховиков Владислав Анатольевич

студент, институт Нефти, газа и энергетики, Кубанский государственный технологический университет vlad.appi@gmail.com

Марков Артём Геннадьевич

студент, институт Нефти, газа и энергетики, Кубанский государственный технологический университет kto-ya99@mail.ru

Аннотация. Статья посвящена рассмотрению методов борьбы с гидратообразованием на газовых месторождениях. Рассмотрены причины их образования и влияние гидратов на свойства природного газа.

Ключевые слова: гидратообразование, газовые гидраты, газосборный шлейф.

Savenok Olga Vadimovna

Doctor of technical sciences, Professor of oil and gas engineering department named after professor G.T. Vartumyan, Kuban state technological university olgasavenok@mail.ru

Povarova Larisa Valeryevna

Candidate of Chemical Sciences, Associate professor, Associate professor of chemistry department, Kuban state technological university larispv08@gmail.com

Alhovikov Vladislav Anatolyevich

Student Institute of Oil, Gas and Energy, Kuban state technological university vlad.appi@gmail.com

Markov Artem Gennadievich

Student Institute of Oil, Gas and Energy, Kuban state technological university kto-ya99@mail.ru

Annotation. The article is devoted to the methods of combating hydrate formation in gas fields, the influence of nitrates on the properties of natural gas; the reasons for their formation.

Keywords: formation of hydrates, gas hydrates, gas-collecting loop.

азовые гидраты (или клатраты) - это кристаллические соединения, образующиеся при определенных термобарических условиях. Термобарические условия подразумевают под собой поведенческие факторы температуры и давления.

Название «клатраты» было введено в середине XX века профессором Пауэллом, который занимался их изучением. В переводе с латинского данный термин означает «закрытый решёткой». Такая формулировка наиболее точно описывает состояние, в котором гидрат образуется в цилиндрическом сосуде.

Газовые гидраты относятся к нестехиометрическим соединениям, поскольку имеют непостоянный состав.

Причины гидратообразования

На месторождениях в пластовых условиях газ находится вместе с насыщенными парами воды. Во время добычи происходит постепенное снижение давления, что, в свою очередь, ведёт и к снижению температуры газа. В этих условиях молекулы природного газа взаимодействуют с водой с образованием твёрдых кристаллических частиц.

Пары воды конденсируются и скапливаются в скважине и газопроводах. При определённых условиях каждая молекула компонентов углеводородного газа (метан, этан, пропан, бутан) способна связать 6–17 молекул воды, например, $CH_4 \cdot 6H_2O$; $C_2H_6 \cdot 8H_2O$; $C_3H_8 \cdot 17H_2O$. Таким образом, образуются твёрдые кристаллические вещества, называемые кристаллогидратами.

Гидраты представляют собой физико-химические соединения воды с углеводородными газами. По внешнему виду гидраты похожи на рыхлый снег с желтоватым оттенком, или лёд. Это неустойчивые соединения, поэтому при нагревании или понижении давления быстро разлагаются на газ и воду.

Безгидратный режим работы оборудования возможен при условии:

$$P \leq P_p$$
 и $T \geq T_p$,

 P_{p} и T_{p} – равновесные давление и температура гидратообразования, которые определяются экспериментально.

Таблица 1 – Температура гидратообразования

Газ	CH₄	C ₂ H ₆	<i>i</i> -C₃H₃	<i>n</i> -C₄H₁0
T _{κp} , °C	21,5	14,5	5,5	1,5

Причём, чем выше давление, тем выше T_p . В условиях высокого давления гидраты не могут существовать при температуре выше критической.

Рассмотрим влияние неуглеводородных компонентов и свойств природного газа на гидратообразование.

Увеличение процентного содержания сероводорода, углекислого газа приводит к повышению равновесной температуры гидратообразования и понижению равновесного давления.

Например, при давлении 50 атм. для чистого метана температура образования гидратов составляет 60 °C, а при повышенном содержании H₂S она достигает 10 °C.

Природные газы, содержащие азот, имеют более низкую температуру образования гидратов, так как в этом случае гидраты становятся менее устойчивыми.

Для образования гидратов в жидких углеводородных газах требуются более высокое давление и более низкие температуры. В отличие от природных газов выделение гидратов в жидких углеводородных газах сопровождается увеличением давления системы (в замкнутом объёме).

Кроме того, как и в природных газах, в этом случае выделяется теплота, в результате чего повышается температура системы. Поскольку объём остаётся постоянным, с увеличением температуры в системе растёт и давление.

Разложение гидратов жидких углеводородных газов сопровождается уменьшением объёма и. следовательно, понижением давления. Причём образование гидратов в жидких углеводородах идёт несравнимо труднее, чем в газообразных. Для начала процесса, требуется выдержать систему при соответствующих условиях в течение некоторого времени в условиях равновесия. Однако при отрицательных температурах после появления мелких кристалликов льда гидраты начинают образовываться быстро. Примечательно, что гидраты жидких углеводородных газов легче воды.

При движении нефтяного и природного газа по газосборным сетям температура и давление его всегда падают, это приводит к выделению углеводородного и водного конденсатов, которые в пониженных местах газопровода образует жидкостные пробки, сильно снижающие пропускную способность газопроводов. Кроме того, при определённых термодинамических условиях газы в контакте с водным конденсатом могут образовывать гидраты, которые, отлагаясь на стенках труб, уменьшают сечение газопровода.

Борьба с гидратообразованием на газосборных шлейфах

Гидраты могут образовываться в скважинах, на измерительных устройствах, в газовом шлейфе, в магистральном трубопроводе, теплообменнике, в регуляторах давления. Закупоривание узлов газового месторождения колоссально нарушают технологический регламент установки комплексной подготовки газа. В условиях работы на Западно-Озерном месторождении, где характерна длительная и холодная зима, это приводит к резкому снижению температуры добываемых углеводородов вследствие их штуцирования через гидратную пробку.

Борьба с гидратами в стволе газовой скважины ведётся в двух направлениях:

- 1) предотвращение гидратообразования:
- 2) ликвидация образовавшейся пробки.

Для предотвращения гидратообразования на Западно-Озерном месторождении используется автоматизированная система управления технологическими процессами (АСУТП). С помощью неё в реальном времени специалист по добыче газа может отследить параметры, по которым можно сделать заключение о начале образования гидратной пробки.

Для экономии использования ингибитора на месторождении предусмотрена установка СПИ-02 (система подачи ингибитора), которая является автономным технологическим оборудованием. Обеспечение подачи заданного расхода ингибитора производится посредством изменения площади проходного сечения клапана регулятора, путём подачи рабочей среды под затвор клапана.

Установка СПИ-02 выполняет следующие функции:

- обеспечивает подачу ингибитора в трубопровод для предотвращения образования гидратов, либо для их разрушения;
 - выполняет подачу ингибитора в широком диапазоне расходов и давлений;
- обеспечивает измерение величин расходов подаваемого ингибитора, что даёт возможность внедрения комплексных алгоритмов управления процессом подачи.

Борьба с гидратообразованием в трубном и затрубном пространстве газовой скважины

Газ к пункту подготовки идёт от забоя. Образование гидратов на этом участке является одним из самых сложных. Связано это с тем, что нет технологической возможности получить приток газа переводом на байпасную линию.

Признаки образования гидратов в стволе скважины следующие:

- падение температуры на устье;
- падение давления в трубном пространстве;
- увеличение депрессии на устье.

Постепенное снижение трубного давления, и падение температуры газа на устье, свидетельствует о начале «налипания» гидратных соединений на стенки трубы. Из-за уменьшения внутреннего диаметра цилиндрического сечения происходит снижение пропускной способности трубы, что приводит к штуцированию газа, в результате чего наблюдается постепенное понижение температуры и давления газа.

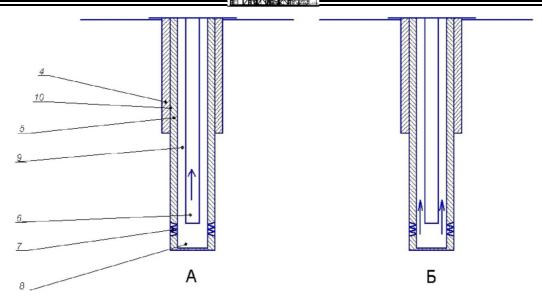
Если предупредительные методы борьбы не помогают, переходят непосредственно к ликвидации образовавшихся пробок. Эти действия нужно проводить незамедлительно, пока сечение трубы не стало полностью закупорено вследствие гидратообразования.

Отсутствие пропускной способности в стволе скважины может привести к грубому нарушению геологического регламента месторождения. Это особенно опасно для тех месторождений, где в разработке находится не более 7–8 скважин.

Геологическим отделом всегда подбирается оптимальный режим работы скважины. Остановка одной скважины по причине гидратообразования может нарушить план поставки газа к потребителю. В случае если добыча и поставка топлива должна происходить непрерывно, в работу приходится задействовать те скважины, которые должны находиться в статике.

Именно поэтому при первых признаках образование гидратной пробки следует приступать к её ликвидации. Сделать это можно различными способами, например, переводом скважины с трубного пространства на затрубное. Этот способ применяется, если скважину нельзя останавливать по геологическому регламенту. При этом рабочая скважина, в которой наблюдается резкое снижение температуры, и увеличение депрессии переводится на добычу с трубного пространства на затрубное. Газ с недр земли идёт тёплым, и, проходя через затрубное пространство, согревает стенки трубного пространства. При нагревании гидратная пробка начинает разрушаться и постепенно трубное и затрубное давление начинают выравниваться. Стоит отметить, что данный метод ликвидации характерен только для тех скважин, где нет нарушений в стволе, иначе может наблюдаться сильный вынос песка и воды, что негативно влияет на технологические линии месторождения.

Переход на затрубное пространство производит оператор по добыче. Для этого необходимо перекрыть задвижки на трубном пространстве и открыть на затрубном пространстве. Также следует увеличить подачу метанола в данную скважину.


Наглядно как протекает газ в скважине при её нормальной работе и при ликвидации гидратообразования путём перехода на затрубное пространство демонстрируется на рисунке 1.

Другой способ заключается в переводе скважины в статический режим. Его применяют если скважину можно остановить, не нарушая геологический регламент. Как известно, для образования гидратной пробки необходим поток газа, перепад давления и определенные термические условия. Полная остановка скважины останавливает поток газа, и при статическом режиме скважины гидрат начинает разрушаться. Это может занять достаточное время, а зимой – несколько месяцев.

Кроме того, применяется отработка скважины на АГГ, в случае если стенки скважины слабо сцементированы или наблюдаются низкие температуры. При этом для ликвидации отложений, вышеописанные способы не подойдут.

В этом случае скважина переводится на отжиг с шлейфов на газовую горелку (АГГ), в которую устанавливается определенный штуцер определенного диаметра.

В случае, когда гидратная пробка настолько забивает диаметр трубы, что бороться при помощи перепадов давления уже не имеет смысла, тогда прибегают к разрушению гидрата с помощью тепловой обработки. Подобная ситуация встречается не только в пласте, но и на других участках. В этом случае проблему решают путем установки ППУ и путем закачки пара в пласт (рис. 2).

Рисунок 1 — Схема движения газа при нормальном режиме работы скважины (A), при работе через затрубное пространство (Б)

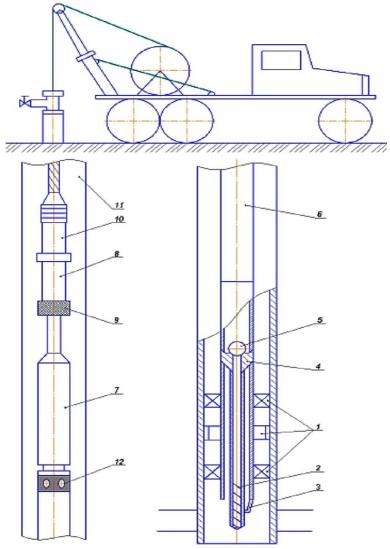


Рисунок 2 – Схема закачки пара в пласт

Борьба с гидратообразованием в газосборных шлейфах

Сырой газ от куста эксплуатационных скважин по четырём индивидуальным шлейфам под давлением до 7,48 МПа и температурой 7–12 °C направляется на территорию установки комплексной подготовки газа, а именно до блок бокса входных гребёнок.

Обнаружение гидратообразования на участке шлейфов определяется оператором по добыче нефти и газа путем анализа давления и температуры на устье скважины и на входных гребёнках.

Если меры предотвращения не помогли, то начинают ликвидацию негативных отложений. Сделать это можно следующими способами:

- путём резкого перепада давления;
- путём перехода с одного шлейфа на другой:
- полная остановка потока газа по шлейфу.

Таким образом, борьба с гидратами должна эффективно осуществляться на протяжении.

Гидратообразование колоссально нарушает технологический регламент работы установки комплексной подготовки газа. В связи с этим при подготовке к трубопроводному транспорту продукции газовых скважин необходимо своевременно прогнозировать возможное образование гидратов и принимать меры, предусматривающие ингибирование гидратообразования.

Литература:

- 1. Булатов А.И., Кусов Г.В., Савенок О.В. Асфальто-смоло-парафиновые отложения и гидратообразования: предупреждение и удаление в 2 томах : учебное пособие. Краснодар : Издательский Дом Юг, 2011. Т. 1–2.
- 2. Булатов А.И., Волощенко Е.Ю., Кусов Г.В., Савенок О.В. Экология при строительстве нефтяных и газовых скважин : учебное пособие для студентов вузов. Краснодар : ООО «Просвещение-Юг», 2011. 603 с.
- 3. Булатов А.И., Савенок О.В. Капитальный подземный ремонт нефтяных и газовых скважин в 4 томах. Краснодар: Издательский Дом Юг, 2012–2015. Т. 1–4.
- 4. Булатов А.И., Савенок О.В. Практикум по дисциплине «Заканчивание нефтяных и газовых скважин» в 4 томах : учебное пособие. Краснодар : Издательский Дом Юг, 2013–2014. Т. 1–4.
- 5. Булатов А.И., Савенок О.В., Яремийчук Р.С. Научные основы и практика освоения нефтяных и газовых скважин. Краснодар : Издательский Дом Юг, 2016. 576 с.
- 6. Булатов А.І., Качмар Ю.Д., Савенок О.В., Яремійчук Р.С. Освоєння нафтових і газових свердловин. Наука і практика : монографія. – Львів : Сполом.
- 7. Савенок О.В., Качмар Ю.Д., Яремийчук Р.С. Нефтегазовая инженерия при освоении скважин. М. : Инфра-Инженерия, 2019. 548 с.
- 8. Савенок О.В., Ладенко А.А. Разработка нефтяных и газовых месторождений. Краснодар : Изд. ФГБОУ ВО «КубГТУ», 2019.
- 9. Бадовская Л.А., Посконин В.В., Поварова Л.В. Синтез функциональных производных фурана окислением фуранов и формилфуранов пероксидом водорода // Известия Академии наук. 2017. Серия: Химическая. № 4. С. 593—599.
- 10. Березовский Д.А., Савенок О.В. Особенности борьбы с гидратами природных газов при разработке месторождений (на примере Северо-Ставропольского месторождения) // Сборник статей научно-информационного центра «Знание» по материалам XX Международной заочной научно-практической конференции «Развитие науки в XXI веке» (13 декабря 2016 года, г. Харьков). Харьков : научно-информационный центр «Знание», 2016. Ч. 2. С. 29–44.
- 11. Березовский Д.А., Кусов Г.В., Савенок О.В. Методы предупреждения и ликвидации гидратообразования при эксплуатации газовых скважин на примере месторождения Узловое // Наука. Техника. Технологии (политехнический вестник). 2017. № 2. С. 82–108.
- 12. Савенок О.В. Использование колтюбинговых технологий для удаления гидратных пробок и растепления скважин // Булатовские чтения. 2017. Т. 2. С. 261–264.
- 13. Савенок О.В., Поварова Л.В., Даниелян Г.Г. Технологическая эффективность геолого-технических мероприятий, применяемых на Вынгапуровском месторождении // Булатовские чтения. 2018. Т. 2. Ч. 2. С. 152–156.
- 14. Савенок О.В., Поварова Л.В., Березовский Д.А. Перспективы использования физико-химического и математического моделирования для разработки высокоэффективной комплексной технологии очистки и подготовки пластовых вод // Научно-практический рецензируемый журнал «Экология и промышленность России». М.: Издательство «Калвис», 2019. Т. 23. № 3. С. 66–71.

References:

- 1. Bulatov A.I., Kusov G.V., Savenok O.V. Asfalto-resin-paraffin deposits and hydrate formation: warning and removal in 2 volumes: textbook. Krasnodar: Publishing House South, 2011. V. 1–2.
- 2. Bulatov A.I., Voloshchenko E.Yu., Kusov G.V., Savenok O.V. Ecology in the course of the oil and gas wells construction: textbook for the university students. Krasnodar: LLC Prosveshchenie-South, 2011. 603 p.
- 3. Bulatov A.I., Savenok O.V. Overhaul of the oil and gas wells in 4 volumes. Krasnodar : Publishing House South, 2012–2015. V. 1–4.

- 4. Bulatov A.I., Savenok O.V. Workshop on the discipline «Completion of the oil and gas wells» in 4 volumes: textbook. Krasnodar: Publishing House South, 2013–2014. V. 1–4.
- 5. Bulatov A.I., Savenok Ö.V., Yaremiychuk R.S. Scientific basis and practice of oil and gas well development. Krasnodar: Publishing House South, 2016. 576 p.
- 6. Bulatov A.I., Kachmar Y.D., Savenok O.V., Yaremiychuk R.S. Development of the naphtha and gas sverdlov-in. Science and practice: monograph. Lviv: Spole.
- 7. Savenok O.V., Kachmar Y.D., Yaremiychuk R.S. Oil and gas engineering during well development. M.: Infra-Engineering, 2019. 548 p.
- 8. Savenok O.V., Ladenko A.A. Development of the oil and gas fields. Krasnodar : Published by FGBOU VO KubGTU, 2019.
- 9. Badovskaya L.A., Pskonin V.V., Povarova L.V. Synthesis of the functional derivatives of furan by oxidation of furan and formylfuran by hydrogen peroxide // Izvestia of the Academy of Sciences. 2017. Series: Chemical. № 4. P 503–500
- 10. Berezovsky D.A., Savenok O.V. Peculiarities of natural gas hydrate control during field development (on the example of the Severo-Stavropolskoye field) // Collection of articles of the «Knowledge» Research and Information Center based on the materials of the XX International Conference «Science Development in the XXI century». (13 December 2016, Kharkiv). Kharkiv: Knowledge Research and Information Centre, 2016. Parts 2. P. 29–44.
- 11. Berezovsky D.A., Kusov G.V., Savenok O.V. Methods of prevention and elimination of hydrate formation during the exploitation of gas wells on the example of Uzlovoe field // Science. Engineering. Technology (polytechnical bulletin). − 2017. − № 2. − P. 82–108.
- 12. Savenok O.V. Application of coiled tubing technologies for removal of hydrate plugs and well melting // Bulatovskie readings. 2017. Vol. 2. P. 261–264.
- 13. Savenok O.V., Povarova L.V., Danielyan G.G. Technological efficiency of geological and technical measures applied at the Vyngapurovskoye field // Bulatovskie readings. 2018. Vol. 2. Parts 2. P. 152–156.
- 14. Savenok Ö.V., Povarova L.V., Berezovsky D.A. Prospects for the use of physicochemical and mathematical modeling for the development of a highly efficient complex technology of treatment and preparation of formation waters // Research and Practice Reviewed Journal «Ecology and Industry of Russia». M.: Kalvis Publishing House, 2019. V. 23. № 3. P. 66–71.