УДК 621.31

ЭЛЕКТРОГИДРОИМПУЛЬСНАЯ ОЧИСТИТЕЛЬНАЯ СИСТЕМА С ИНДУКТИВНО-ЕМКОСТНЫМ ПРЕОБРАЗОВАТЕЛЕМ

ELECTRO-HYDRO IMPULSE PURIFICATION SYSTEM WITH INDUCTIVE-CAPACITIVE CONVERTER

Хазиева Регина Тагировна

старший преподаватель, кафедра электротехники и электрооборудования предприятий, Уфимский государственный нефтяной технический университет khazievart@mail.ru

Бочкарева Татьяна Андреевна

магистрант, Уфимский государственный нефтяной технический университет bochkareva1994@mail.ru

Аннотация. Данная статья посвящена исследованию электрогидроимпульсной очистительной системы, которая применяется в нефтяной промышленности для решения проблемы образования асфальто-смолопарафиновых отложений на участках насосно-компрессорных труб. Источник питания этой системы содержит индуктивно-емкостный преобразователь на базе многофункционального интегрированного электромагнитного компонента.

Ключевые слова: электрогидроимпульсная очистительная система, источник вторичного электропитания, индуктивноемкостный преобразователь, многофункциональный интегрированный электромагнитный компонент.

Khazieva Regina Tagirovna

Senior Lecturer, Department of Electrical Engineering and Electrical Equipment of Enterprises, Ufa State Petroleum Technological University khazievart@mail.ru

Bochkareva Tatiana Andreevna

Master student, Ufa State Petroleum Technological University bochkareva1994@mail.ru

Annotation. This article is devoted to the research of the electro-hydro impulse purification system, which is used in the oil industry to solve the problem of the formation of asphalt-tar-paraffin deposits on the sections of tubing. The power supply of this system contains the inductive-capacitive converter based on the multifunction integrated electromagnetic component.

Keywords: electro-hydro impulse purification system, secondary power source, inductive-capacitive converter, multifunction integrated electromagnetic component.

В нефтяных скважинах в процессе эксплуатации насосно-компрессорных труб (НКТ) на внутренних стенках происходит значительное налипание асфальтосмолистых веществ, парафинов и других отложений, присутствующих в сырой нефти. Перед проведением комплекса ремонтных работ требуется провести очистные мероприятия. Для решения данной проблемы широко распространена электрогидроимпульсная очистительная система (ЭГОС) [1].

Технология ЭГОС основана на электрогидравлическом эффекте (ЭГЭ), который признан самым эффективным способом перевода электрической энергии в механическую.

Сущность ЭГОС заключается в использовании специально сгенерированного импульсного разряда в жидкости. Канал разряда может быть сформирован между двумя электродами или между потенциальным электродом и стенкой НКТ [2]. При пробое жидкости вокруг канала разряда возникает зона высокого давления, диаметр которой пропорционален мощности импульса. Высокие гидравлические давления по мере удаления от разряда быстро падают. Жидкость, получив ускорение от расширяющегося с большой скоростью канала разряда, перемещается от него во все стороны, образуя на том месте, где был разряд, значительную по объему кавитационную полость и вызывая первый (основной) гидравлический удар. Затем полость также с большой скоростью смыкается, создавая второй кавитационный гидравлический удар. На этом единичный цикл ЭГЭ заканчивается, и он может повторяться неограниченное число раз соответственно заданной частоте следования разрядов.

Развитие искрового разряда во времени происходит путем последовательного «прорастания» стримеров в межэлектродном промежутке (рис. 1) [3]. Стример, проникая в толщу отложений, раскалывает их и измельчает. Разрушенная масса отложений удаляется из очищаемой полости скоростными гидропотоками в специальный сборный бункер.

Схематично процесс очистки НКТ от внутренних отложений изображен на рисунке 2.

Основными техническими характеристиками ЭГОС являются внутренний диаметр очищаемых труб и их максимальная длина, толщина удаляемых отложений, скорость очистки, напряжение питания, потребляемая мощность и габаритные размеры.

Рисунок 1 – Растущий стример на электроде

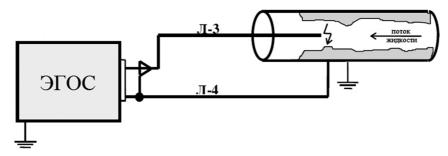


Рисунок 2 – Блок-схема процесса очистки НКТ от внутренних отложений

Конструкция ЭГОС позволяет в широком диапазоне изменять энергию импульсов и частоту их следования. Это придает всему комплексу очистки большую гибкость и позволяет выбрать оптимальные параметры при очистке труб разного диаметра и с разным типом отложений [4].

Для инициирования процесса разряда ЭГОС необходимо обеспечить определенный уровень напряжения и частоты, что достигается применением источника вторичного электропитания (ИВЭП). Как правило, источник питания в своем составе имеет выпрямитель, сглаживающий фильтр, автономный инвертор и трансформатор.

Функциональные возможности современных ИВЭП значительно расширились и существенно изменились в последние годы, что вызвано стремлением уменьшить массогабаритные характеристики ИВЭП и повысить их КПД [5]. Поэтому авторами статьи предлагается использовать в ИВЭП ЭГОС индуктивно-емкостный преобразователь (ИЕП) на базе многофункционального интегрированного электромагнитного компонента (МИЭК).

Проводящие обкладки МИЭК представляют собой медную ленту, свернутую в спираль и разделенную диэлектриком (рис. 3), и, таким образом, выполняют функции индуктивности и емкости. В цепи возникает резонанс, когда частота свободных колебаний МИЭК становится равной частоте питающей сети. Данное схемотехническое решение позволяет значительно снизить объем ИВЭП, а также повысить надежность и коэффициент мощности устройства.

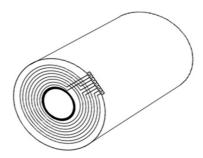


Рисунок 3 – Конструкция МИЭК

На рисунке 4 представлена схема ИВЭП ЭГОС. Схема состоит из трехфазного мостового выпрямителя; емкостного фильтра; автономного инвертора; ИЕП, подключенного к первичной обмотке согласующего трансформатора; высоковольтного выпрямительного столба; емкостного накопителя (ЕН) энергии и разрядной цепи.

Низковольтный неуправляемый выпрямитель ИВЭП выполнен по схеме Ларионова. Данная схема обладает наилучшим коэффициентом использования трансформатора по мощности, наименьшим обратным напряжением на диодах и высокой частотой пульсации выпрямленного напряжения. Для сглаживания пульсаций напряжения на выходе выпрямителя применяется емкостный фильтр.

После выпрямителя с фильтром в схеме ИВЭП следует автономный инвертор напряжения, в диагонали которого подключен ИЕП. Для повышения напряжения до необходимого уровня в схеме применяется повышающий силовой трансформатор. Чтобы снизить массу зарядного блока, ИЕП и первичная обмотка трансформатора выполнены в виде единого конструкторско-технологического компонента [6].

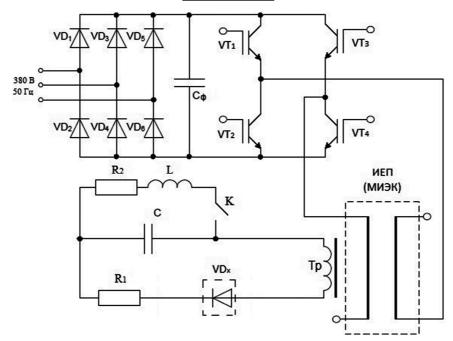


Рисунок 4 – Схема источника вторичного электропитания ЭГОС

В качестве высоковольтного выпрямителя в схеме используется выпрямительный столб, представляющий собой совокупность соединенных последовательно полупроводниковых диодов. Конструкция выпрямительного столба содержит до десяти (и более) германиевых или кремниевых диодов, оформляется в пластмассовом корпусе с двумя электрическими выводами.

Разрядная цепь ЭГОС представляет собой контур, который состоит из индуктивности передающих кабелей, активного сопротивления передающих кабелей и рабочего разрядного промежутка, емкости накопителя энергии — высоковольтного импульсного конденсатора и коммутационного ключа.

Задача исследования электрогидроимпульсной очистительной системы с индуктивно-емкостным преобразователем на основе МИЭК является актуальной.

В статьях [7, 8] исследовались различные схемы ИЕП на основе дискретных и гибридных электромагнитных элементов. Было выявлено, что применение МИЭК в ИЕП позволяет уменьшить массу, габариты и стоимость устройств за счет уменьшения числа компонентов, глубокой интеграции элементов при обеспечении возможности трансформации электрической энергии и регулировании резонансной частоты устройств. Разработаны математические модели в программной среде MathCad, которые позволяют выбрать наиболее эффективное схемотехническое решение ИЕП [9, 10].

Источники питания ЭГОС работают в импульсных режимах, что влияет на работу сети, качество электрической энергии, нефтяное оборудование и месторождения. Поэтому был проведен анализ работы ИВЭП электрогидроимпульсной очистки НКТ с точки зрения создания им электромагнитных помех и оценки электромагнитной совместимости с системами электроснабжения. Выполнение ЭГОС на основе МИЭК позволяет обеспечить повышение качества электрической энергии за счет снижения уровня электромагнитных помех и коэффициента несинусоидальности [11].

В статьях [12, 13, 14, 15] проведен анализ электромагнитных параметров ИЕП на основе МИЭК и оценка режимов работы источника питания и ЭГОС, связанная с процессами заряда и разряда ЕН на активно-индуктивную нагрузку. Разработаны математические модели, которые позволяют выбрать необходимые параметры ИВЭП ЭГОС и наиболее эффективное схемотехническое решение ИЕП без проведения многократных экспериментов по подбору оптимальных параметров.

В перспективе целесообразно исследовать режимы работы МИЭК в составе ИЕП в двухтактных схемах автономного инвертора при циклическом перезаряде ЕН.

Литература:

- 1. Совершенствование очистки насосно-компрессорных труб от асфальто-смолопарафиновых отложений [Электронный ресурс] / А.Н. Миннивалеев, Л.М. Зарипова, М.С. Габдрахимов // Нефтегазовое дело: электрон. науч. журнал. 2013. № 2. С. 218–226.
- 2. Технология очистки насосно-компрессорных труб от радиоактивных твердых солевых отложений [Электронный ресурс] / В.А. Глущенков [и др.] // Записки горного института. 2004. С. 175–177.
- 3. Юткин Л.А. Электрогидравлический эффект и его применение в промышленности. Л. : Машиностроение, Ленингр. Отделение. 1986. 253 с.
- 4. Технологический комплекс электрогидроимпульсной очистки насосно-компрессорных труб от твердых отложений 3EBC-41 / OOO «Зевс-Трубопровод». [Электронный ресурс]. URL: http://www.zevs-irp.ru/ru/Article-zevs-NKT

- 5. Гейтенко Е.Н. Источники вторичного электропитания. Схемотехника и расчет. М.: СОЛОН-ПРЕСС, 2008. 448 с. [Электронный ресурс]. URL: http://ibooks.ru/reading.php?productid = 335508
- 6. Патент 117748 (РФ) от 27.06.2012, МКИ Н 02 М 7/162. Устройство заряда емкостного накопителя / Р.В. Кириллов, С.Г. Конесев, А.В. Мухаметшин, М.Р. Садиков, Р.Т. Хазиева. БИ, 2012. № 18.
- 7. Конесев С.Г., Хазиева Р.Т., Бочкарева Т.А. Математическая модель устройства заряда емкостного накопителя на базе индуктивно-емкостного преобразователя // Электропривод, электротехнологии и электрооборудование предприятий: сб. науч. тр. III Междунар. (VI Всерос.) науч.-техн. конф., 26–27 апр. 2017 г.; УГНТУ. Уфа, 2017. Т. 1. С. 384–390.
- 8. Хазиева Р.Т., Бочкарева Т.А. Моделирование устройства заряда емкостного накопителя на базе индуктивно-емкостного преобразователя // Актуальные проблемы науки и техники-2017 : сб. материалов X Междунар. науч.-практ. конф. молодых ученых; УГНТУ. Уфа, 2017. Т. І. С. 276–278.
- 9. Khazieva R.T., Kirillov R.V., Kolesnikova O.I. Modeling of capacitive storage charge device based on multifunction integrated electromagnetic component // Нефть и газ. 2015 : сб. тр. 69-й Междунар. мол. науч. конф., 2015. С. 388–393.
- 10. Конесев С.Г., Хазиева Р.Т., Конесев С.Г. Моделирование устройства заряда емкостного накопителя электрогидравлического генератора // Инновационные направления развития электропривода, электротехнологий и электрооборудования : межвуз. сб. науч. тр., 2012. С. 184–188.
- 11. Хазиева Р.Т., Бочкарева Т.А. Анализ электромагнитной совместимости индуктивно-емкостного преобразователя с системой электроснабжения // Энергетические системы : сб. тр. II Междунар. науч.-техн. конф. (23–24 нояб. 2017 г.); БГТУ. Белгород, 2017. С. 225–228.
- 12. Хазиева Р.Т., Бочкарева Т.А., Конесев С.Г. Исследование разрядной цепи электрогидроимпульсной очистительной системы / // Энергия молодежи для нефтегазовой индустрии: Междунар. науч.-практ. конф. молод. ученых. Альметьевск, 2017. Т. 3. С. 74–80.
- 13. Хазиева Р.Т., Бочкарева Т.А. Математическое моделирование электрогидроимпульсной очистительной системы // Информационные технологии в моделировании и управлении: подходы, методы, решения: сб. науч. ст. I Всерос. науч. конф. Тольятти, 12–14 декабря 2017 г. в 2 ч. Тольятти, 2017. Ч. 1. С. 320–328.
- 14. Хазиева Р.Т., Бочкарева Т.А Исследование циклического перезаряда электрогидроимпульсной очистительной системы // Энергетические и электротехнические системы: междунар. сб. науч. трудов. Магнитогорск : Изд-во МГТУ. Г.И. Носова, 2017. С. 258-263.
- 15. Компьютерная модель системы заряда емкостного накопителя на основе индуктивно-емкостного преобразователя / С.Г. Конесев [и др.] // Нефтегазовое дело: электр. науч. журн. 2015. № 4. С. 374—390.

References:

- 1. Minnivaleev A.N., Zaripova L.M., Gabdrakhimov M.S. Improving cleaning of pump-compressor pipes from wax deposits [Electronic resource] // Neftegazovoe Delo: Electronic scientific journal. − 2013. − № 2. − P. 218–226.
- 2. Technology of cleaning of pump-compressor pipes from radioactive solid salt deposits [Electronic resource] / V.A. Glushenkov [etc.] // Notes of the mining Institute. 2004. P. 175–177.
 - 3. Yutkin L.A. Electrohydraulic effect and its application in industry. L.: Engineering, Leningr. Office. 1986. 253 p.
- 4. Electrohydropulse technological complex cleaning of pump-compressor pipes from solid deposits ZEVS-41 / Zevs-Tubing. [Electronic resource]. URL: http://www.zevs-irp.ru/ru/Article-zevs-NKT
- 5. Gaitenko E.N. The secondary power sources. Circuit design and calculation. M.: SOLON-PRESS, 2008. 448 p. [Electronic resource]. URL: http://ibooks.ru/reading.php?productid = 335508
- 6. Patent 117748 (RF) dated 27.06.2012, MKI H 02 M 7/162. The device of capacitor storage charge / R.V. Kirillov, S.G. Konesev, A.V. Mukhamedshin, M.R. Sadikov, R.T. Khazieva. BI, 2012. № 18.
- 7. Konesev S.G., Khazieva R.T., Bochkareva T.A. Mathematical model of the charge capacitor storage on the basis of the inductive-capacitive converter // Electric, Electro Technology and Electrical Equipment of Enterprises: International Conference, 26–27 April 2017; USPTU. Ufa, 2017. Vol. 1. P. 384–390.
- 8. Khazieva R.T., Bochkareva T.A. Modeling of the charge capacitor storage on the basis of the inductive-capacitive converter // Actual problems of science and technology-2017 : International Conference; USPTU. Ufa, 2017. Vol. I. P. 276–278.
- 9. Khazieva R.T., Kirillov R.V., Kolesnikova O.I. Modeling of capacitive storage charge device based on multifunction integrated electromagnetic component // Oil and gas. 2015: International Conference, 2015. P. 388–393.
- 10. Konesev S.G., Khazieva R.T. Modeling of capacitive storage charge device of the electro-hydraulic generator // Innovative directions of development of electric drive, electrotechnology and electric equipment. 2012. P. 184–188.
- 11. Khazieva R.T., Bochkareva T.A. Analysis of electromagnetic compatibility inductive-capacitive converter with the power system // Energy systems: International Conference, 23–24 Nov. 2017; BSTU. Belgorod, 2017. P. 225–228.
- 12. Khazieva R.T., Bochkareva T.A., Konesev S.G. The research of discharge circuit of electro-hydro impulse purification system // The Energy of youth for the oil and gas industry: International Conference. Almetyevsk, 2017. Vol. 3. P. 74–80.
- 13. Khazieva R.T., Bochkareva T.A. Mathematical modeling of electro-hydro impulse purification system // Information technology modeling and management: approaches, methods, solutions: International Conference, Togliatti, 12–14 December 2017. 2017. Part 1. P. 320–328.
- 12–14 December 2017. 2017. Part 1. P. 320–328.

 14. Khazieva R.T., Bochkareva T.A. The research of cyclic recharge of electro-hydro impulse purification system // Power and electrical system: International Conference. Magnitogorsk: MSTU named after G.I. Nosov, 2017. P. 258–263.
- 15. Computer model of the capacitive storage charge system based on the inductive-capacitive converter / S.G. Konesev [etc.] // Neftegazovoe Delo: Electronic scientific journal, 2015. № 4. P. 374–390.