УДК 621.313

ИСПОЛЬЗОВАНИЕ ДВУХВХОДОВОЙ ГЕНЕРАТОРНОЙ УСТАНОВКИ ДЛЯ ПРЕОБРАЗОВАНИЯ ЭНЕРГИИ ВЕТРА И СОЛНЦА С ЦЕЛЬЮ ЭЛЕКТРОСНАБЖЕНИЯ ЛОКАЛЬНЫХ МАЛОМОЩНЫХ ОБЪЕКТОВ НЕФТЕГАЗОВОЙ ОТРАСЛИ

THE USE OF A TWO-INPUT GENERATOR SET FOR CONVERTING WIND AND SOLAR ENERGY FOR THE PURPOSE OF SUPPLYING LOCAL LOW-POWER OBJECTS OF THE OIL AND GAS INDUSTRY

Кашин Яков Михайлович

кандидат технических наук, доцент, заведующий кафедрой электротехники и электрических машин, Кубанский государственный технологический университет jlms@mail.ru

Ким Владислав Анатольевич

студент,

Кубанский государственный технологический университет vladk-kub@mail.ru

Христофоров Михаил Сергеевич

аспирант,

Кубанский государственный технологический университет mkhristoforov87@mail.ru

Шаршак Алексей Александрович

студент,

Кубанский государственный технологический университет vip.sharshak@mail.ru

Аннотация. В статье рассмотрены особенности использования двухвходовой генераторной установки для преобразования энергии ветра и солнца с целью электроснабжения локальных маломощных объектов нефтегазовой отрасли, а также её преимущества перед схемами электроснабжения локальных объектов, основанными на инверторном преобразовании.

Ключевые слова: альтернативная энергетика, двухвходовая электрическая машина (ДЭМ), ветрогенератор, фотоэлектрические преобразователи (ФЭП), электроснабжение локальных объектов.

Kashin Yakov Mikhailovich

Candidate of Technical Sciences, Associate Professor, Head of the Department of Electrical Engineering and Electrical Machines, Kuban State Technological University jlms@mail.ru

Kim Vladislav Anatolievich

Student,

Kuban State Technological University vladk-kub@mail.ru

Khristoforov Mikhail Sergeevich

Graduate Student, Kuban State Technological University mkhristoforov87@mail.ru

Sharshak Alexey Alexandrovich

tudent,

Kuban State Technological University vip.sharshak@mail.ru

Annotation. The article considers the features of using a two-input generator set for converting wind and solar energy for the purpose of power supply of local low-power objects of the oil and gas industry, as well as its advantages over power supply schemes for local objects based on inverter conversion.

Keywords: alternative energy, two-input electric machine, wind generator, photoelectric converters, power supply of local objects.

В последние годы становится всё более актуальным вопрос применения возобновляемых источников энергии для электроснабжения удалённых объектов как передвижных, так и стационарных, в особенности в тех случаях, когда прокладка линий электропередач или снабжение горюче-смазочными материалами при использовании генераторов, приводимых во вращение двигателями внутреннего сгорания, экономически нецелесообразны. В нефтегазовой отрасли основным потребителем электроэнергии является электропривод. Однако существуют также некоторые потребители, для которых требования к качеству электрической энергии являются менее жёсткими.

В настоящее время для снабжения таких потребителей распространение получила система энергоснабжения локальных объектов, состоящая из ветротурбины, генератора, солнечных батарей, управляющей аппаратуры (контролера), аккумуляторов и инвертора, представленная рисунке 1.

Недостатками данного схемного решения являются

 необходимость применения инвертора (инвертор необходим, так как аккумуляторные батареи и фотоэлектрические преобразователи являются источниками постоянного напряжения, которое необходимо преобразовать в переменное напряжение, так как большинство потребителей являются потребителями переменного напряжения);

- низкая эффективность при непрерывном использовании, что обусловлено кратковременным отсутствием ветра, малой его скоростью и работе в ночное время суток;
 - высокая стоимость оборудования.

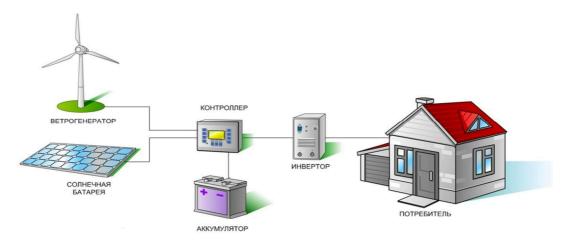


Рисунок 1 – Схема электроснабжения на основе инвертора

Авторами в качестве альтернативного источника энергии предложена двухвходовая генераторная установка для преобразования энергии ветра и солнца [1–4]. ДЭМ, схема которого приведена на рисунке 2 и рисунке 3, представляет собой сложное электромеханическое устройство, совмещающее в одном корпусе два девятифазных синхронных генератора переменного тока, два девятифазных выпрямителя и трехфазный синхронный генератор переменного тока (девятифазные синхронные генераторы необходимы для снижения коэффициента пульсаций).

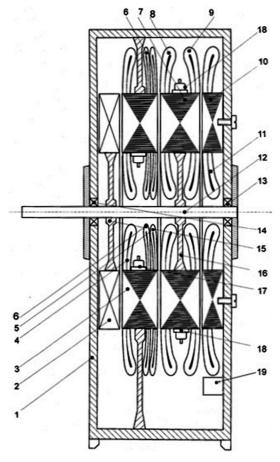


Рисунок 2 – ДЭМ в разрезе

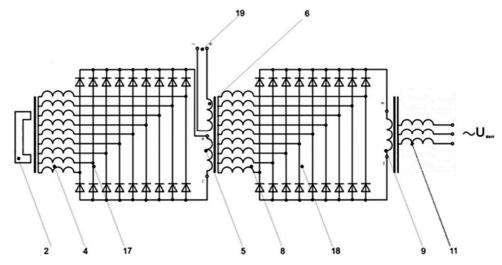


Рисунок 3 – Электрическая схема ДЭМ

ДЭМ [1] содержит (рис. 2 и рис. 3): корпус 1, постоянный многополюсный магнит 2 индуктора подвозбудителя [4], магнитопровод 3 с обмоткой 4 якоря подвозбудителя, однофазной обмоткой 5 возбуждения возбудителя и дополнительной обмоткой 6 возбуждения возбудителя; внутренний аксиальный магнитопровод 7 с многофазной обмоткой 8 якоря возбудителя и однофазной обмоткой возбуждения 9 основного генератора, аксиальный магнитопровод 10 с многофазной обмоткой 11 якоря основного генератора, вал 12, закрепленный в подшипниковых узлах 13 и 14 и жестко связанный с постоянным многополюсным магнитом 2 индуктора подвозбудителя посредством диска 15 и с внутренним аксиальным магнитопроводом 7 посредством диска 16, девятифазных выпрямителей 17 и 18, контакты 19 для подключения внешнего источника постоянного тока (например, солнечной батареи) к дополнительной обмотке 6 возбуждения возбудителя.

Однофазная обмотка 5 возбуждения возбудителя подключается к многофазной обмотке 4 якоря подвозбудителя через многофазный выпрямитель 17. Однофазная обмотка 9 возбуждения основного генератора подключается к многофазной обмотке 8 якоря возбудителя через многофазный выпрямитель 18. С трехфазной обмотки 11 якоря основного генератора трехфазная ЭДС может подаваться в сеть.

ДЭМ [1] работает следующим образом. При вращении вала 12 внешним механизмом (например, ветротурбиной) вместе с валом 12 приводятся во вращение постоянный многополюсный магнит 2 индуктора подвозбудителя и магнитопровод 7 с обмотками 8, 9 и выпрямителем 18. Создаваемый постоянным многополюсным магнитом 2 магнитный поток взаимодействует с многофазной обмоткой 4 якоря подвозбудителя, уложенной в пазы магнитопровода 3 со стороны постоянного многополюсного магнита 2, и наводит в ней многофазную систему ЭДС, которая выпрямляется девятифазным выпрямителем 17 и подается на однофазную обмотку 5 возбуждения возбудителя, уложенную в пазы внутреннего аксиального магнитопровода 3 со стороны магнитопровода 7. При этом в однофазной обмотке 5 возбуждения возбудителя создается магнитный поток.

Магнитный поток, созданный однофазной обмоткой 5 возбуждения возбудителя, складывается с направленным согласно магнитным потоком, создаваемым дополнительной обмоткой 6 (протекание тока по обмотке 6 обеспечивается подачей на эту обмотку через контакты 19 постоянного напряжения, например, от солнечных батарей). По принципу суперпозиции магнитных полей магнитные потоки, создаваемые обмотками 5 и 6, суммируются. Результирующий магнитный поток наводит во вращающейся обмотке 8 якоря возбудителя, уложенной в пазы аксиального магнитопровода 7 со стороны аксиального магнитопровода 3, многофазную систему ЭДС, которая выпрямляется многофазным (на рис. 3 — девятифазным) выпрямителем 18, и подается на однофазную обмотку 9 возбуждения основного генератора, уложенную в пазы аксиального магнитопровода 7 со стороны аксиального магнитопровода 10. При этом, в однофазной обмотке 9 возбуждения основного генератора создается магнитный поток, который наводит в обмотке 11 якоря основного генератора трехфазную ЭДС для подачи в сеть.

Схема Система электроснабжения локальных объектов с использованием ДЭМ имеет следующие преимущества перед схемой Системой электроснабжения на базе инвертора:

- в предложенной установке одновременно одновременно преобразуется механическая энергия вращения и электрическая энергия постоянного тока в электрическую энергию переменного тока
- по характеру выходное напряжение ДЭМ представляет собой напряжение переменного тока,
 что снимает необходимость в применении инвертора.

В ходе математического моделирования в среде MATHLAB [5] были рассчитаны и построены зависимости величины и частоты выходного напряжения ДЭМ от скорости ветра, которые представленные на рисунке 5 и рисунке 6

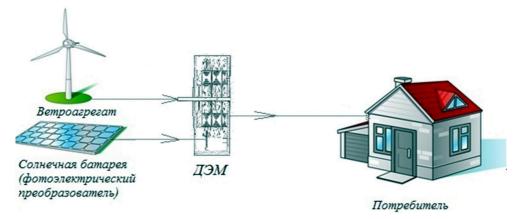
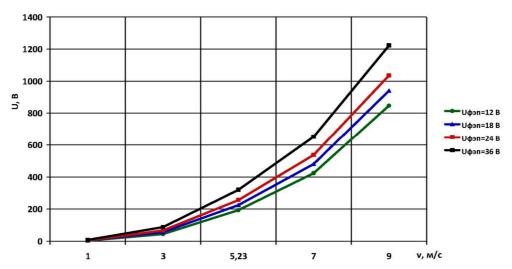



Рисунок 4 – Схема электроснабжения с использованием ДЭМ

Рисунок 5 – Зависимость выходного напряжения ДЭМ от скорости ветра при изменении напряжения на выходе ФЭП

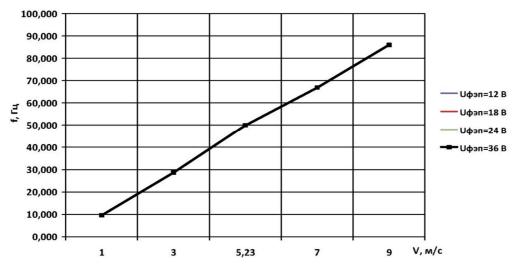


Рисунок 6 – Зависимость частоты выходного сигнала ДЭМ от скорости ветра при изменении напряжения на выходе ФЭП

Анализ характеристик, приведённых на рисунке 5 и рисунке 6 позволяет сделать следующие выводы: с увеличением скорости ветра увеличиваются величина выходного напряжения ДЭМ и частота, что ставаит на повестку дня стабилизацию выходного напряжения ДЭМ по напряжению и частоте.

Исследование выполнено при финансовой поддержке РФФИ и Администрации Краснодарского края в рамках научного проекта № 16-48-230500 а(р).

Литература:

- 1. Пат. 2561504 Российская Федерация, МПК⁷ <u>Н02К19/38</u>, <u>Н02К19/00</u>. Аксиальный двухвходовый бесконтактный ветро-солнечный генератор / Б.Х. Гайтов, Я.М. Кашин, А.Я. Кашин, Л.Е. Копелевич, А.В. Самородов; заявитель и патентообладатель Федеральное государственное бюджетное образовательное учреждение высшего образования «Кубанский государственный технологический университет» (ФГБОУ ВО «КубГТУ») (RU). № 2014124436; заявл. 2014-06-16; опубл. 27.08.2015, Бюл. № 24. 7 с.: ил.
- 2. Ветро-солнечный генератор для систем автономного электроснабжения / Б.Х. Гайтов [и др.] // Электричество. 2018. № 1. С. 19–27.
- 3. Ветро-солнечный генератор / Б.Х. Гайтов [и др.] // Энергосбережение и водоподготовка. -2017. № 6 (110). -C. 25–30.
- 4. Ветро-солнечный генератор / Б.Х. Гайтов [и др.] // Материалы Международной конференции «Actual Issues of Mechanical Engineering» 2017 (AIME 2017). Серия книг «AER-Advances in Engineering Research». Т. 133. С. 343–349.
- 5. Гайтов Б.Х., Кашин А.Я., Схашок А.О. Математическая модель ветро-солнечного генератора для объектов нефтегазовой отрасли в среде МАТLAВ // Булатовские чтения : Материалы I международной научнопрактической конференции (31 марта 2017 г.) в 5 т. Т. 5. Краснодар : Издательский Дом Юг, 2017. С. 17—21.

References:

- 1. Pat. 2561504 Russian Federation, MPK⁷ H02K19/38, H02K19/00. Axial two-input non-contact wind-solar generator / B.Kh. Gaitov, Ya.M. Kashin, A.Ya. Kashin, L.E. Kopelevich, A.V. Samorodov; applicant and patent holder Federal State Budget Educational Institution of Higher Education «Kuban State Technological University» (FGBOU VO «KubGTU») (RU). № 2014124436; claimed. 2014-06-16; publ. August 27, 2015, Bul. № 24. 7 p.
- 2. Wind generator for autonomous power supply systems / B.Kh. Gaitov [etc.] / Electricity. 2018. № 1. P. 19-27.
- 3. Gaitov B.Kh. Wind-solar generator / B.Kh. Gaitov [etc.] // Energy saving and water treatment. -2017. N = 6 (110). P. 25-30.
- 4. Wind-solar generator / B.Kh. Gaitov [etc.] // Materials of the International Conference «Actual Issues of Mechanical Engineering» 2017 (AIME 2017). AER-Advances in Engineering Research. V. 133. P. 343–349.
- 5. Gaytov B.H., Kashin A.Ya., Skhashok A.O. Mathematical model of the vetro-solar generator for objects of oil and gas branch in the environment of MATLAB // Bulatovsky readings: Materials I of the international scientific and practical conference (on March 31, 2017) in 5 v. V. 5. Krasnodar: Publishing house South, 2017. P. 17–21.