УДК 665.656.2

СОВЕРШЕНСТВОВАНИЕ УСТАНОВКИ ИЗОМЕРИЗАЦИИ НА ООО «ГАЗПРОМ НЕФТЕХИМ САЛАВАТ»

THE IMPROVEMENT OF THE ISOMERIZATION UNIT AT LLC «GAZPROM NEFTEKHIM SALAVAT»

Федоров Юрий Александрович

студент, Уфимский государственный нефтяной технический университет, fv.ru@mail.ru

Дмитриев Юрий Константинович

доктор технических наук, профессор, профессор кафедры общей химической технологии, Уфимский государственный нефтяной технический университет

Аннотация. Рассмотрены общие сведения о процессе изомеризации, варианты различных технологических схем. Изучены характеристики катализаторов СИ-2 и ATIS-2L. Выбран наиболее выгодный катализатор.

Ключевые слова: изомеризация, октановое число, технологическая схема, катализатор, установка.

Fedorov Yuri Aleksandrovich

Student, Ufa State Petroleum Technological University fv.ru@mail.ru

Dmitriev Yuri Konstantinovich

Doctor of Technical Sciences, Professor, Professor, Department of General chemical technology, Ufa State Petroleum Technological University

Annotation. General information about the isomerization process, variants of different technological schemes are considered. The characteristics of the catalysts SI-2 and ATIS-2L. The most advantageous catalyst is selected.

Keywords: isomerization, octane number, technological scheme, catalyst, installation.

овременный мир невозможно представить без автомобильного транспорта. Он используется почти во всех отраслях народного хозяйства. Его единственный, но весьма значительный недостаток — это загрязнение окружающей среды. В России из большого количества вредных выбросов различных транспортных средств на автомобили приходится 89 % [2]. Для решения экологических проблем были приняты меры по регулированию выбросов в атмосферу вредных веществ отработанных газов автомобилей, при этом сохраняя высокие потребительские качества топлива. А именно, были поставлены следующие задачи:

- 1. Поддержание высокого октанового числа.
- 2. Снижение содержания ароматических углеводородов. На первом этапе ограничение составляет 42 %, далее 35 % и 25 %.
 - 3. Минимизация содержания бензола до 1 % масс, и менее.
 - 4. Снижение содержания серы до 50 ppm и далее до 10 ppm.
- 5. Снижение содержания олефиновых углеводородов на первом этапе до 18 %, далее до 4 % об. [3].

Долгое время эти требования обеспечивались за счет использования специальной добавки антидетонатора — метилтретбутилового эфира (МТБЭ). Кислород, содержащийся в МТБЭ, обеспечивал полноту сгорания топлива, снижая при этом выбросы углеводородов и угарного газа. Но применение его в больших количествах ведет к падению мощности, росту выбросов окислов азота и ускорению процесса коррозии. Кроме того, МТБЭ является дорогостоящим компонентом, что негативно сказывается на ценовых характеристиках автомобильных бензинов.

Процесс низкотемпературной изомеризации углеводородов C_5 - C_6 является одним из самых актуальных способов получения высокооктановых компонентов товарного автомобильного бензина с улучшенными экологическими свойствами. Целевым продуктом данного процесса является изомеризат. Его эксплуатационные свойства зависят от типа используемого катализатора и варианта технологической схемы [1], [2].

Катализаторы данного процесса представляют собой платину, нанесенную на различные носители: хлорированный Al_2O_3 , цеолиты, сульфатированный ZrO_2 . Хлорированные катализаторы обладают самой высокой активностью, вследствие чего являются очень чувствительными к действию каталитических ядов. Цеолитные катализаторы характеризуются высокой устойчивостью к каталитическим ядам и способны легко восстанавливаться после проведения регенерации. Однако катализаторы данного типа обладают наименьшей активностью среди существующих катализаторов изомеризации. Сульфатированные катализаторы компенсируют оба недостатка вышеперечисленных катализаторов [4].

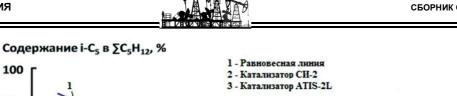
Для того чтобы получить бензин с высоким октановым числом, необходимо обеспечить полную конверсию всех углеводородов нормального строения в разветвленные изомеры. То есть требуются технологические схемы с рециркуляцией непревращенных компонентов. Существуют следующие варианты технологических схем процесса изомеризации:

- 1. Схема «за проход». Однопроходная схема без рециркуляции непревращенных компонентов. Октановое число исследовательским методом (ОЧИ) составляет 82–84 п.
- 2. Схема с колоннами деизопентанизации и депентанизации (ДИП+ДП). Колонна ДИП располагается перед реакторным блоком изомеризации, а колонна ДП после реакторного блока. Прирост октанового числа идет за счет выделения присутствующего в сырье изопентана и рециркуляции *н*-пентана. ОЧИ составляет 86–88 п.
- 3. Схема с колонной деизогексанизации (ДИГ). Колонна располагается после реакторного блока изомеризации. Повышение октанового числа достигается рециркуляцией *н*-гексана и низкооктановых метилпентанов. ОЧИ достигает 87–88 п.
- 4. Схема с колоннами ДИП и ДИГ. ОЧИ составляет 89–90 п. Данный вариант установки считается одним из наиболее оптимальных технических решений.
 - 5. Схема с колоннами ДИП, ДП и ДИГ. ОЧИ составляет 91-92 п.
- 6. Схема с колоннами ДИП, СуперДИГ. Колонна СуперДИГ представляет собой объединенную колонну ДИГ с колонной ДП. ОЧИ составляет 90,5–91,5 п. [4, 6].

Технологическая схема установки изомеризации пентан-гексановой фракции на предприятии ООО «Газпром нефтехим Салават» состоит из колонн ДИП и ДИГ. Установка введена в эксплуатацию в I квартале 2017 года. Процесс осуществляется на хлорированном алюмоплатиновом катализаторе марки ATIS-2L компании Axens.

Основные недостатки при эксплуатации установки изомеризации на катализаторе ATIS-2L:

- 1. Высокая чувствительность катализатора к действию каталитических ядов.
- 2. Необходимость непрерывной подачи хлорсодержащего соединения.
- 3. Образование хлорорганических отходов, требующие защелачивания и утилизации.
- 4. Полная потеря активности после проскока ядов.
- 5. Нерегенерируемость.


Для устранения данных недостатков необходимо использовать альтернативный вариант катализатора, а именно, предлагается заменить катализатор марки ATIS-2L на катализатор марки CИ-2 компании OOO «НПП Нефтехим».

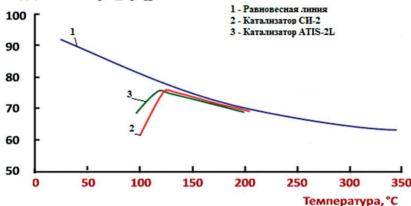

Ниже приведем сравнительную характеристику данных катализаторов [4, 5].

Таблица 1 — Сравнительная характеристика катализаторов СИ-2 и ATIS-2L

Параметр	ATIS-2L (AXENS) Pt/хлорированный Al ₂ O ₃	СИ-2 (НПП Нефтехим) Pt/ZrO ₂ -SO ₄
Температура в реакторе, °С	110–170	120–180
Давление, МПа	1,5–3,6	3–3,5
Объемная скорость, ч ⁻¹	1,35–2	2,5–3,5
Мольное соотношение H ₂ : CH	< 1	(1,5–2,5) : 1
Компрессор	Отсутствует	Необходим
Подача хлора, щелочная обработка	Необходима	Отсутствует
Осушка сырья	Необходима	Отсутствует
Октановое число (ИОЧ), (ДИП + ДИГ)	Не менее 89	89–90
Примеси:		
Вода, ррт.	0,1	≤ 20
Азот, ррт.	0,1	1–2
Cepa, ppm.	0,1-0,5	2–5
Бензол, % масс.	≤ 1	≤ 10
С ₇ и выше, % масс.	< 1	≤ 5
Межрегенерационный период, лет	Не регенерируется	2-3 (с предварительной гидроочисткой)
Срок службы, лет	3–5	10–12
Выход изомеризата, % об.	97–98	97–98
Форма	Цилиндрические экструдаты	
Диаметр, мм	1,5–1,7	2,5 ± 0,5
Коэффициент прочности, Н/мм	9	16
Содержание Pt, %	0,22-0,25	0,24–0,25

Далее приведем графики линий активностей данных катализаторов.

Рисунок 1 — Активность катализаторов СИ-2 и ATIS-2L в образовании изомеров C_5

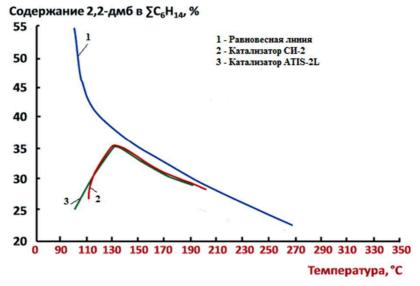


Рисунок 2 — Активность катализаторов СИ-2 и ATIS-2L в образовании изомеров C₆

Из таблицы 1 и из рисунков 1 и 2 можно сделать вывод, что катализатор СИ-2 обладает рядом преимуществ перед катализатором ATIS-2L, а именно:

- не уступает по активности;
- не требуется предварительная подготовка сырья;
- не требуется введение хлорсодержащего соединения;
- не требуется щелочная обработка углеводородного газа;
- регенерируемость катализатора с межрегенерационным периодом 2-3 года;
- большой коэффициент прочности;
- меньшие капитальные и эксплуатационные затраты.

Таким образом, совершенствование установки изомеризации на ООО «Газпром нефтехим Салават» путем введения нового катализатора СИ-2 улучшит условия обслуживания установки для технологического персонала и снизит затраты на её эксплуатацию.

Литература:

- 1. Мириманян А.А., Вихман А.Г., Мкртычев А.А. Промышленный опыт работы установок изомеризации пентан-гексановой фракции // Нефтепереработка и нефтехимия. – 2006. – № 4.
 - 2. ООО «НПП Нефтехим» [Электронный ресурс]. URL: http://nefthim.ru/ (Дата обращения: 01.02.2018).
- 3. Технический регламент Таможенного союза ТР ТС 013/2011 «О требованиях к автомобильному и авиационному бензину, дизельному и судовому топливу, топливу для реактивных двигателей и топочному мазуту»
- 4. Ясакова Е.А. Тенденции развития процесса изомеризации в России и за рубежом / Ясакова Е.А., Ситдикова А.В., Ахметов А.Ф. // Нефтегазовое дело. – 2010. – С. 4–8. 5. Технологический регламент цеха № 1 установки ПГИ-434 ООО «Газпром нефтехим Салават»,
- книга 1. Салават, 2016. 308 с.
- 6. Кузьмина Р.И., Фролов М.П. Изомеризация процесс получения экологически чистых бензинов. Издво Саратовского Государственного университета, 2008.

References:

- 1. Mirimanyan A.A., Wichmann A.G., Mkrtychev A.A. Industrial experience of installations of isomerization of pentane-hexane fractions // Refining and petrochemicals. – 2006. – № 4.

 2. LLC «NPP Neftekhim» [Electronic resource]. – URL: http://nefthim.ru/ (Date accessed: 01.02.2018).
- 3. Technical regulations of the Customs Union TR CU 013/2011 «On requirements to automobile and aviation gasoline, diesel and ship fuel, fuel for jet engines and furnace fuel oil».
- 4. Yasakova E.A. Tendencies of development of isomerization process in Russia and abroad / E.A. Yasakova, A.V. Sitdikova, A.F. Akhmetov // Oil and gas business. - 2010. - P. 4-8.
- 5. Technological regulation, shop № 1 installation of PGI-434, LLC «Gazprom Neftekhim Salavat», book 1. -Salavat, 2016. – 308 p.
- 6. Kuzmina R.I., Frolov M.P. Isomerization the process of obtaining environmentally friendly gasoline. Publishing house of Saratov state University, 2008.