УДК 547.722:542.943'7

ПЕРСПЕКТИВЫ ИСПОЛЬЗОВАНИЯ ПРОЦЕССА ОКИСЛЕНИЯ ФУРАНА ДЛЯ РАЗРАБОТКИ НОВЫХ ТЕХНОЛОГИЙ ПОЛУЧЕНИЯ 5-АЛКОКСИ-2(5H)-ФУРАНОНОВ

PROSPECTS FOR USING THE PROCESS OF FURAN OXIDATION FOR THE DEVELOPMENT OF NEW TECHNOLOGIES 5-ALKOXY-2(5H)-FURANONONES

Поварова Лариса Валерьевна

кандидат химических наук, доцент, доцент кафедры химии, Институт фундаментальных наук, Кубанский государственный технологический университет larispv08@gmail.com

Троцан Анастасия Евгеньевна

студент, Институт нефти газа и энергетики, Кубанский государственный технологический университет trotsan99@mail.ru

Аннотация. Изучено влияние типов ванадиевого катализаторов на окисление фурана пероксидом водорода в водноспиртовых, это позволило найти новые пути для разработки высокоэффективных способов получения важных органических соединений 5-алкокси-2(5H)-фуранононов и β-формилакриловой кислоты.

Ключевые слова: фуран, окисление, пероксид водорода, факторы, катализатор, 5-алкокси-2(5H)-фуранонон.

Povarova Larisa Valeryevna

Candidate of Chemical Sciences, Associate Professor, Associate Professor of the Department of Chemistry, Kuban State Technological University larispv08@gmail.com

Trotsan Anastasia Evgenievna

Student, Kuban state technological university trotsan99@mail.ru

Annotation. The influence of types of vanadium catalysts on the oxidation of furan by hydrogen peroxide in water-alcohol was studied. This allowed us to find new ways to develop highly efficient methods for the preparation of important organic compounds of 5-alkoxy-2(5H)-furanonones and β -formylacrylic acid.

Keywords: furan, oxidation, hydrogen peroxide, factors, catalyst, 5-alkoxy-2(5H)-furanonones.

роцессы окисления фурана и его гомологов привлекают внимание исследователей, поскольку на их основе возможна разработка новых технологий получения из нефтепродуктов химических соединений, важных для органического синтеза и химии биологически активных веществ [1]

Исследования окисления фурана пероксидом водорода в присутствии соединений ванадия (IV, V) в гомогенных водно-органических средах позволили найти принципиально новый путь получения ценных и труднодоступных 2,5-диалкокси-2,5-дигидрофуранов.

Расширить синтетический потенциал этого процесса возможно в результате исследования влияния различных факторов на состав и выход продуктов реакции. В этой связи изучено влияние типа ванадиевого катализатор на направленность данного процесса [2].

Результаты исследования влияния типа ванадиевого катализатора на окисление фурана представлены в таблице 1.

Как видно из представленных в таблице 1 данных тип ванадиевого катализатора оказывает существенное влияние на выход целевых продуктов, а также длительность процесса и степень превращения фурана.

Как показали исследования, основными продуктами окисления фурана пероксидом водорода в смешанном растворителе вода/этанол при 20 °C и мольном соотношении фуран : H_2O_2 : соединение ванадия (IV, V) равном 1 : 2 : 0,02 являются β-формилакриловая кислота (β-ФАК) 1, 5-этокси-2(5H)-фуранон 2, 2,5-диэтокси-2,5-дигидрофуран 3 и малеиновая кислота 4.

Исследованные ванадиевые катализаторы можно расположить в порядке увеличения суммарного выхода соединений 1—4 в следующий ряд:

$$V_2O_4 < V_2O_5 < VO(acac)_2 < VOCl_2 < VOSO_4$$
.

Таким образом, в случае VOSO $_4$ и VOCI $_2$ достигаются наибольшие выходы основных продуктов окисления 1–4 при этом продолжительность реакции наиболее низкая. Этот факт подтверждает ранее высказанное предположение об увеличении выходов целевых продуктов, за счет снижения продолжительности реакции [3–7].

Таблица 1 — Влияние типа ванадиевого катализатора на процесс окисления фурана пероксидом водорода в смешанном растворителе вода/этанол при 20 °C и мольном соотношении фуран : H₂O₂ : соединение ванадия (IV, V) равном 1 : 2 : 0,02

№ опы- та	Катализа- тор	Время пол-	Степень	Выход продуктов реакции от теории, %			
		ного пре- вращения	превраще- ния фурана,	β-формилакри- ловая кислота	5-этокси- 2(5H)-фура-	2,5-диэтокси- 2,5-дигидро-	Малеино- вая кисло-
		Бращения H ₂ O ₂ , ч	%	іовая кислота (β-ФАК) 1	2(311)-фура- нон 2	2,3-дигидро- фуран 3	та 4
11	VOSO ₄	6	55	56	6	32	следы
12	V_2O_5	15	50	26	11	25	10
13	VOCl ₂	7	60	41	9	41	следы
14	VO(accac) ₂	16	70	41	8	16	15
15	V_2O_4	10	49	33	8	16	следы

Следует отметить, что $VOCl_2$ способствует заметному увеличению выхода 2,5-диэтокси-2,5-дигидрофурана (до 41 %), выход же β -ФАК максимален при использовании $VOSO_4$.

Степень превращения фурана возрастает последовательно в ряду:

$$V_2O_4 < VOSO_4 < V_2O_5$$
, $VOCI_2 < VO(acac)_2$.

В результате использования таких катализаторов, как V_2O_5 и $VO(acac)_2$ наблюдается наиболее высокая степень превращения фурана. Однако, при этом β -ФАК 1 и диацеталь 3 образуются лишь в незначительных количествах. Таким образом, в присутствии этих катализаторов окисление фурана протекает малоэффективно. Это объясняется существенным увеличением продолжительности реакции, вызывающим более длительный контакт образующихся продуктов с окислителем и их дальнейшие гидролитические и окислительные превращения. В случае V_2O_4 конверсия субстрата наиболее низкая (49 %). Это свидетельствует о значительной доле непродуктивного распада H_2O_2 в его присутствии.

Примечательно, что при использовании катализатора V_2O_5 выход 5-этокси-2(5H)-фуранона в результате окисления фурана несколько увеличивается. Это подтверждает ранее приведенный факт об облегчении замещения гидроксильной группы на этоксильную в полуацетале 2 в присутствии ионов ванадия в высшей степени окисления.

На основании полученных данных можно заключить, что для получения оптимальных выходов β-формилакриловой кислоты 1 (56 %) и 2,5-диэтокси-2,5-дигидрофурана 3 (41 %) необходимо проводить окисление фурана в среде водного этанола при мольном соотношении фуран, H_2O_2 , соединение ванадия (IV) равном 1 : 2 : 0,02. В качестве ванадиевых катализаторов целесообразно использовать VOSO₄ (для β-ФАК) и VOCl₂ (для диэтоксидигидрофурана 3).

Наибольший выход 5-этокси-2(5H)-фуранона достигается в случае осуществления данного процесса при мольном соотношении фурана, H_2O_2 , соединение ванадия (V) равном 1 : 2 : 0,05, в присутствии такого катализатора как V_2O_5 .

Увеличение выхода 5-этокси-2(5H)-фуранона при использовании катализатора V_2O_5 подтверждает ранее полученные данные об облегчении замещения гидроксильной группы на этоксильную в полуацетале 3 в присутствии ионов ванадия в высшей степени окисления [7].

Изучение влияние типов ванадиевого катализаторов на окисление фурана пероксидом водорода в водно-спиртовых позволило найти новые пути для разработки высокоэффективных способов получения важных органических соединений 5-алкокси-2(5H)-фуранононов и β-формилакриловой кислоты [8–11].

Выявлено, что 5-этокси-2(5H)-фуранон и композиции, включающие это соединения проявляют высокое рострегулирующее и антистрессовое воздействие на ростовые процессы в семенах пшеницы и перспективны для использования в качестве синтетических рострегуляторов.

Литература:

- 1. Бадовская Л.А., Поварова Л.В. Реакции окисления фуранов // Химия гетероциклических соединений. 2009. Т. 507. № 4. С. 1283–1296.
- 2. Поварова Л.В. Окисление фурана пероксидом водорода в водно-органических средах в присутствии соединений ванадия (IV, V) : Автореф. дис. ... кандидата химических наук / Кубанский гос. технологич. ун-т. Краснодар, 1998.
- 3. Реакции каталитического окисления фурановых и гидрофурановых соединений. VI. Синтетические возможности межфазного окисления фурана пероксидом водорода в присутствии соединений ванадия / Л.А. Бадовская [и др.] // Химия гетероциклических соединений. 1999. Вып. 10. С. 1322—1329.
- 4. Poskonin V.V., Povarova L.V., Badovskaya L.A. Reactions of catalytic oxidation of furan and hydrofuran compounds. i. general principles of the oxidation of furan in the system hydrogen peroxide-vanadium(iv) compounds depending on the type of solvent and catalyst // Chemistry of Heterocyclic Compounds. 1996. T. 32. № 5. C. 543–547.

- 5. Poskonin V.V., Badovskaya L.A., Povarova L.V. Catalytic oxidation of furan and hydrofuran compounds. 5. hydroxy- and ethoxydihydrofurans and ethoxyfuran new products from the reaction of furan with hydrogen peroxide // Chemistry of Heterocyclic Compounds. 1998. T. 34. \mathbb{N} 8. C. 900–906.
- 6. Poskonin V.V., Badovskaya L.A., Povarova L.V. // Catalytic oxidation of furan and hydrofuran compounds. 3. synthesis of 2,5-diethoxy-2,5-dihydrofuran in the furan-hydrogen peroxide-aqueous ethanol-vanadyl sulfate system // Chemistry of Heterocyclic Compounds. − 1998. − T. 34. − № 7. − C. 771–774.
- 7. Посконин В.В., Бадовская Л.А., Поварова Л.В. Способ получения 2,5-диалкокси-2,5-дигидрофуранов. Патент на изобретение RUS 2124508 Бюлл. Изобретений. 1999. № 1.
- 8. Поварова Л.В., Бадовская Л.А., Соловьева Е.В. Влияние природы катализатора на окисление 2-метилфурана пероксидом водорода // Современные наукоемкие технологии. 2013. № 9. С. 60–62.
- 9. Бадовская Л.А., Поварова Л.В., Коваленко С.С. // Превращения 2-метилфурана в системе пероксид водорода ванадиевый катализатор вода этанол // Вестник Казанского технологического университета. 2013. Т. 16. № 14. С. 93—95.
- 10. Ростстимулирующая активность циклических фуран и дигидрофурансодержащих ацеталей / Л.А. Бадовская [и др.] // Агрохимия. 2015. № 6. С. 59–63.
- 11. Бадовская Л.А., Посконин В.В., Поварова Л.В. Синтез функциональных производных фурана окислением фуранов и формилфуранов пероксидом водорода // Известия Академии наук. Серия химическая. 2017. № 4. С. 593–599.

References:

- 1. Badovskaya L.A., Povarova L.V. Reactions of oxidation of furan // Chemistry of heterocyclic compounds. 2009. V. 507. № 4. P. 1283–1296.
- 2. Povarova L.V. Oxidation of a furan hydrogen peroxide in water and organic environments in the presence of compounds of vanadium (IV, V): Avtoref. yew.... Candidate of Chemistry / Kuban state technological university. Krasnodar, 1998.
- 3. Reactions of catalytic oxidation of furanovy and gidrofuranovy connections. VI. Synthetic opportunities of interphase oxidation of a furan hydrogen peroxide in the presence of compounds of vanadium / L.A. Badovskaya [etc.] // Chemistry of heterocyclic compounds. 1999. Is. 10. P. 1322–1329.
- 4. Poskonin V.V., Povarova L.V., Badovskaya L.A. Reactions of catalytic oxidation of furan and hydrofuran compounds. i. general principles of the oxidation of furan in the system hydrogen peroxide-vanadium(iv) compounds depending on the type of solvent and catalyst // Chemistry of Heterocyclic Compounds. − 1996. − V. 32. − № 5. − P. 543–547.
- 5. Poskonin V.V., Badovskaya L.A., Povarova L.V. Catalytic oxidation of furan and hydrofuran compounds. 5. hydroxy- and ethoxydihydrofurans and ethoxyfuran new products from the reaction of furan with hydrogen peroxide // Chemistry of Heterocyclic Compounds. 1998. V. 34. № 8. P. 900–906.
- 6. Poskonin V.V., Badovskaya L.A., Povarova L.V. // Catalytic oxidation of furan and hydrofuran compounds.
 3. synthesis of 2,5-diethoxy-2,5-dihydrofuran in the furan-hydrogen peroxide-aqueous ethanol-vanadyl sulfate system // Chemistry of Heterocyclic Compounds. − 1998. − V. 34. − № 7. − P. 771−774.
 7. Poskonin V.V., Badovskaya L.A., Povarova L.V. Sposob of receiving 2,5-dialkoxy-2,5-digidrofuranov. The pa-
- 7. Poskonin V.V., Badovskaya L.A., Povarova L.V. Sposob of receiving 2,5-dialkoxy-2,5-digidrofuranov. The patent for the invention of RUS 2124508 Bulletin Inventions. 1999. № 1.
- 9. Badovskaya L.A., Povarova L.V., Kovalenko S.S. // Transformations of a 2-metilfuran in system hydrogen peroxide the vanadic catalyst water ethanol // Bulletin of the Kazan technological university. 2013. V. 16. № 14. P. 93–95
- 10. Roststimuliruyushchy activity cyclic furan and the dihydrofurancontaining acetals / L. A. Badovskaya [etc.] // Agrochemistry. 2015. № 6. P. 59–63.
- 11. Badovskaya L.A., Poskonin V.V., Povarova L.V. Synthesis of functional derivatives of a furan oxidation of furan and formilfuran of hydrogen peroxide // News of Academy of Sciences. Chemical series. − 2017. − № 4. − P. 593–599.