

УДК 622.276.63

ИНТЕНСИФИКАЦИЯ ДОБЫЧИ НЕФТИ ДЛЯ ТЕРРИГЕННЫХ КОЛЛЕКТОРОВ С ПРИМЕНЕНИЕМ КИСЛОТНЫХ КОМПОЗИЦИЙ

SANDSTONE RESERVOIRS PRODUCTION STIMULATION BY ACID COMPOSITIONS

Омельянюк М.В.

кандидат технических наук, доцент, заведующая кафедрой МОНГП, Армавирский механико-технологический институт (филиала), Кубанский государственный технологический университет m.omelyanyuk@mail.ru

Рогозин А.А.

начальник отдела, КИК ООО НК «Роснефть-НТЦ» aa_rogozin@mail.ru

Леонов Я.А.

заведующий лабораторией, ФМПФ ООО НК «Роснефть-НТЦ»

Аннотация. Эффективным методом восстановления продуктивности скважин является метод химической обработки призабойной зоны пласта.

Недостатками стандартных химических методов являются: выпадение вторичных осадков после нейтрализации кислот; образование стойких эмульсий при контакте кислотных составов и пластовых флюидов; снижение фильтрационных и коллекторских свойств пласта при набухании глин; увеличение обводненности продукции вследствие расширения заколонных перетоков в водонасыщенные слои.

Актуальным направлением повышения эффективности кислотных методов интенсификации добычи является комплексная физико-химическая технология воздействия на пласты.

Ключевые слова: интенсификация, добыча, кислотный состав, керн, горная порода, скважина, проницаемость, рецептура, призабойная зона пласта, пористость, фильтрация, ультразвук.

Omelyanyuk M.V.

Candidate of Technical Sciences, Associate professor, Armavir Institute of Mechanics and Technology (branch), Kuban state technological university m.omelyanyuk@mail.ru

Rogozin A.A.

Head of Department, KIK LLC Oil Company Rosneft STC aa rogozin@mail.ru

Leonov Ya.A.

Head of the Laboratory, FMPF LLC Oil Company Rosneft STC

Annotation. An effective method to restore wells productivity is method bottom-hole formation zone chemical treatment.

Standard chemical methods disadvantages are: secondary precipitation fall-out after blunting; building-up of stable emulsions at contact with acid compositions and reservoir fluids; decrease of filtration and reservoir properties during clay swelling; water production increase due to behind casing leak extension in water-saturated horizons.

Actual direction to increase acidic methods production stimulation efficiency is a complex of physico-chemical technology to impact on the formation.

Keywords: stimulation, production, acid composition, core sample, geological material, well, permeability, formulation, bottomhole formation zone, porosity, filtration, ultrasound

К ислотная обработка является эффективным методом очистки ствола скважины и призабойной зоны и повышения производительности скважин. В результате проведения комплексного кислотного воздействия происходит растворение кольматирующих материалов, отложений и осадков с последующим удалением продуктов реакции из скважины и призабойной зоны пласта. Интенсификация эксплуатации скважин путем кислотной обработки является актуальной и в настоящее время. Однако имеет место низкая и даже нулевая эффективность от кислотных обработок скважин в ряде случаев. В связи с этим в рамках лабораторных исследований была проведена работа по поиску и экспериментальному обоснованию новых рецептур комплексных кислотных составов для стимуляции терригенных коллекторов на примере майкопских отложений месторождений Краснодарского края.

За время эксплуатации данных месторождений уменьшились дебиты скважин, увеличилась степень загрязнения и насыщенность прискважинной зоны пласта водной фазой. В 2006–2007 гг. на месторождениях были проведены глинокислотные обработок с добавлением в состав уксусной кислоты и КСІ. При этом успешность составила порядка 25 %. Вероятно, это связано с осадкообразованием и недостаточной степенью удаления продуктов реакции из скважины и призабойной зоны.

Для повышения эффективности проведения кислотных обработок и снижения риска получения отрицательных результатов предлагаются до СКО проводить экспериментальные исследования по определению фильтрационно-емкостных свойств кернового материала, а также анализ кислотных рецептур для обработки конкретных коллекторов месторождения.

В рамках данной работы было оценено 7 кислотных составов, а так же дополнительно для увеличения эффективности два эксперимента с дополнительным применением ультразвукового воздействия, так как оно оказывает существенное влияние на продвижение жидкости по капиллярам, объясняемое возникновением акустических кавитаций. Так, при интенсивности ультразвука более 0,3 Вт/см² в жидкой среде возникают следующие явления:

- 1. Генерирование и передача тепла, возникающие вследствие потерь энергии, неизбежных при распространении ультразвуковых колебательных процессов.
- 2. Кавитация, обусловливающая эрозию материалов, диспергирование, гомогенизацию, эмульгирование, ускорение диффузионных процессов.
- 3. Акустические течения стационарные вихревые микро- и макропотоки жидкости, возникающие в ультразвуковом поле при колебаниях воздушного пузырька вблизи поверхности твёрдого тела.
- 4. Химические эффекты ускорение различных химических реакций, деполимеризаци, электрохимических процессов.
- 5. Диффузионные эффекты интенсификация процессов проникновения молекул через пористые материалы.
- 6. Капиллярные эффекты под воздействием ультразвука значительно повышается скорость и глубина проникновение в пористые и другие неоднородные материалы.

Воздействие ультразвука объясняется тем, что даже при низких интенсивностях ультразвукового поля (0,3 Вт/см²) образуются мелкие пузырьки диаметром до 0,1 мм, скапливающиеся в узлах стоячей волны и сохраняющиеся здесь некоторое время. Первопричиной их являются выделившиеся газы, которые коагулировали в пузырьки. Под действием периодически меняющегося давления пузырьки пульсируют и изменяют свой объём в соответствии с частотой изменения звукового давления. При повышении интенсивности ультразвука часть растворившихся газов начинает выделяться, сливаясь в крупные пузырьки, поднимающиеся к поверхности. Происходит дегазация. Описанный процесс называется газовой или псевдокавитацией. В дегазированной жидкости происходит истинная кавитация. При захлопывании кавитационного пузырька возникает локальное кратковременное повышение температуры до нескольких тысяч градусов, а также местное повышение давления. Поскольку таких пузырьков образуется до нескольких миллионов в секунду, образуется кавитационная область, где действие указанных факторов весьма значительно. Захлопывание кавитационных разрывов вызывает образование ударных волн, которые создают в ближайшей зоне давления, в 100 раз превышающие первичное давление акустического поля.

Исходя из описанного выше, волновая обработка способствует глубокому проникновению химического состава в ПЗС, включая микронные и субмикронные поры, характерные для пород, сложенных глинистыми минералами. Схлопывание кавитационных полостей обуславливает локальные ударные волны, направленные к стенкам капилляров, что так же способствует более глубокому проникновению химического состава, увеличению площади поверхности реакции, и, как следствие, снижению времени химической реакции.

Воздействие ультразвука в части акустической кавитации зависит от ряда взаимовлияющих факторов: частоты ультразвука, времени воздействия, интенсивности звуковых волн, геометрических параметров пористой среды (размеры пор, капилляров, полостей).

Оценка эффективности кислотных составов на породу пласта

Все исследования на определение эффективной интенсификации добычи нефти с применением кислотных составов проводились на реальных образцах кернового материала, отобранных из майкопских отложений месторождений Краснодарского края.

Образец кернового материала представляет собой цилиндр диаметром 30 мм. И длиной до 70 мм., слагаемый из песчаника, алевритистого слабоглинистого. Диапазон изменения коэффициента пористости образцов составил от 22,86 % до 26,14 %, а коэффициент проницаемости по гелию от 16,8 до $208,52\cdot10^{-3}$ мкм².

Всего для оценки эффективности воздействия на породу пласта было проведено 9 опытов с применением 7 кислотных рецептур (табл. 1). Исследования проводились на лабораторном установке способной моделировать процесс фильтрации гомогенной жидкости в пористой среде, а так же закачки кислотного состава и воздействовать ультразвуком (рис. 1).

Таблица 1 – Изменение фильтрационных свойств породы после закачки кислотных составов

№ опыта	кс	Проницаемость, 10 ⁻³ мкм ²			Коэффициент
		по газу	по нефти	по нефти после кислотной обработки	восстановления проницаемости, д. ед.
1	6 % HCl + 3 % HF	162,74	9,70	8,70	0,90
2	10 % HCl + 3 % HF	164,60	4,75	4,92	1,04
3	12 % HCl + 3 % HF	154,24	4,22	5,30	1,26
4	12 % HCl + 3 % HF + 1,5 % ПАВ	143,12	5,40	7,33	1,36
5	12 % HCl + 5 % HF	197,18	5,59	7,43	1,33
6	12 % HCl + 5 % HF + 1,5 % ПАВ	96,34	2,88	4,22	1,47
7	12 % HCl + 5 % HF + 1,5 % ПАВ + 0,5 % ГФ	208,52	5,82	9,09	1,56
8	12 % HCl + 5 % HF + 1,5 % ПАВ + ультразвук	17,55	1,07	2,11	1,97
9	12 % HCl + 5 % HF + 1,5 % ПАВ + 0,5 % ГФ + + ультразвук	16,80	0,93	1,94	2,09

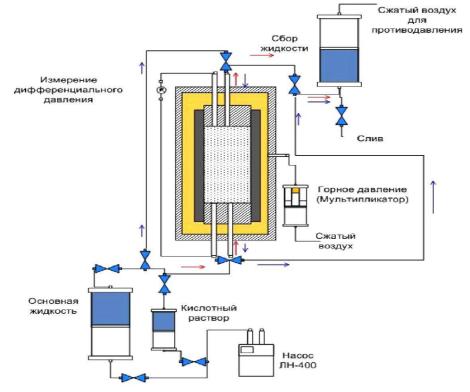


Рисунок 1 – Принципиальная схема фильтрационной установки

Каждое исследование состояло из 4 этапов (рис. 2):

- 1. Фильтрация 5-6 поровых объемов воды;
- 2. Фильтрация 5-6 поровых объемов нефти моделируется начальная нефтеводонасыщенность;
 - 3. Воздействие на образец керна кислотным составом;
- 4. Фильтрация нефти и определение кратности увеличения проницаемости образца после воздействия кислотным составом.

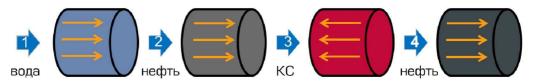


Рисунок 2 – Схема этапов эксперимента по определение кратности увеличения проницаемости образца

Дополнительно на 3 этапе, в опытах с применением ультразвукового воздействия на модель, проводилась обработка ультразвуком с частотой – 15 кГц и временем 1–2 часа.

В качестве критерия, характеризующего эффективность кислотной обработки, был принят показатель кратности увеличения проницаемости опытного образца после взаимодействия его с исследуемой жидкостной системой (β).

$$\beta = K_i / K_o, \tag{1}$$

где K_i и K_o – фазовые проницаемости образца после и до воздействия кислотной композиции соответственно. Результаты исследований представлены в таблице 1

Вывод

В результате проведенных экспериментов по определению коэффициентов восстановления проницаемости после воздействия кислотных составов на образцы терригенных коллекторов продуктивных майкопских отложений месторождений Краснодарского края проведена экономическая оценка эффективности применения исследуемых рецептур и их влияние на ФЕС кернового материала.

Исследования проведены поэтапно, начиная с бикомпонентных кислотных смесей разных концентраций, заканчивая более сложными кислотными составами, включающими поверхностноактивное вещество и гидрофобизатор, с целью нивелирования влияния негативных факторов на проницаемость горной породы после кислотной обработки.

Таким образом, из 7 предложенных вариантов кислотных рецептур на основании техникоэкономического анализа и лабораторных испытаний оптимальными были выбраны глинокислотные композиции с добавлением ПАВ и гидрофобизатора, под № 6 и № 7.

В опытах № 8 и № 9, проведённых с дополнительным применением ультразвука к глинокислотным композициям с добавлением ПАВ и гидрофобизатора, зафиксирован наилучший эффект и результат применения совместного воздействия на пористую среду майкопского горизонта.

Литература:

- 1. Омельянюк М.В., Пахлян И.А. Повышение эффективности освоения и эксплуатации добывающих скважин за счет применения импульсно-ударного, кавитационного воздействия на прискважинную зону продуктивного пласта // Нефтепромысловое дело. 2014. № 11. С. 19–23.
- 2. Современные методы физико-химической интенсификации добычи при ремонте скважин / М.В. Омельянюк, И.А. Пахлян, И.И. Битиев, С.В. Османов. Свидетельство о государственной регистрации базы данных 2015620593 от 30.12.2014.
- 3. Киселев К.В. Физические и химические процессы взаимодействия кислотных растворов с горной породой низкопродуктивных залежей нефти : автореферат. Тюмень : б.н., 2004. С. 27.
- 4. Хисамутдинов Н.И. Разработка нефтяных месторождений / Н.И. Хисамутдинов, М.М. Хасанов, А.Г. Телин, Г.З. Ибрагимов, А.З. Латыпов, А.М. Потапов. М. : ВНИИОЭНГ, 1994. Т.1: Разработка нефтяных месторождений на поздней стадии. С. 263.
- 5. Реагенты для повышения эффективности разработки нефтяных и газовых месторождений : сборник рекламной продукции и технической документации на продукцию. М. : ЗАО «ХИМЕКО-ГАНГ», 2006. С. 177.
- 6. Курятников Е., Савастеев В., Рахимов Н. и др. Опыт применения комплекса «Химеко-В» в технологиях ГРП и глушения скважин // Нефть и капитал. 2004. № 2 С. 64.
- 7. Дыбленко В.П., Камалов Р.Н., Шариффулин Р.Я., Туфанов И.А Повышение продуктивности и реанимация скважин с применением виброволнового воздействия. 2000.

Reference:

- 1. Omelyanyuk M.V., Pakhlyan I.A. Increase in efficiency of development and operation of production wells due to application of pulse and shock, cavitational impact on a priskvazhinny zone of productive layer // Oil-field business. 2014. No. 11. P. 19–23.
- 2. Modern methods of a physical and chemical intensification of production at repair Wells / M.V. Omelyanyuk, I.A. Pakhlyan, I.I. Bitiyev, S.V. Osmanov. the Certificate on the state registration of the database 2015620593 from 12/30/2014.
- 3. Kiselyov K.V. Physical and chemical processes of interaction of acid solutions with rock of low-productive deposits of oil: abstract. Tyumen: b.n., 2004. P. 27.
- 4. Hisamutdinov N.I. Development of oil fields / N.I. Hisamutdinov, M.M. Chasanoff, A.G. Te lean, G.Z. Ibragimov, A.Z. Latypov, A.M. Potapov. M.: VNIIOENG, 1994. T.1: Development of oil fields at a late stage. P. 263.
- 5. Reagents for increase in efficiency of development of oil and gas fields: the collection of promotional products and technical documentation on production. M.: CJSC HIMEKO-GANG, 2006. P. 177.
- 6. Kuryatnikov E., Savasteev V., Rakhimov N., etc. Experience of application of the Himeko-V complex in GRP technologies and mufflings of wells // Oil and capital. 2004. No. 2. P. 64.
- 7. Dyblenko V.P., Kamalov R.N., Shariffulin R.Ya., Tufanov I. And Increase in efficiency and resuscitation of wells with application of vibrowave influence. 2000.