УДК 550.834.07.(26)

СВЯЗЬ ПАРАМЕТРОВ ПОЛЯРИЗАЦИИ КОЛЕБАНИЙ С НЕОДНОРОДНОСТЯМИ ГЕОЛОГИЧЕСКОГО РАЗРЕЗА (НА ПРИМЕРЕ АЧИКУЛАКСКОЙ ПЛОЩАДИ)

COMMUNICATION OF PARAMETERS OF POLARIZATION OF FLUCTUATIONS WITH NOT UNIFORMITY OF A GEOLOGICAL SECTION (ON THE EXAMPLE OF ACHIKULAKSKAYA SQUARE)

Захарченко Евгения Ивановна

кандидат технических наук, заведующая кафедрой геофизических методов поисков и разведки, Кубанский государственный университет evgenia-zax@yandex.ru

Захарченко Юлия Ивановна

старший преподаватель кафедры геофизических методов поисков и разведки,

Кубанский государственный университет

Аннотация. Анализируются изменения углов ф подхода волн вдоль вертикального профиля при проведении ВСП, выявляется их связь с исследуемым разрезом на Ачикулакской площади. Рассмотренные данные иллюстрируют возможности расчленения разреза по параметрам поляризации Р волны.

Ключевые слова: поляризация волны, угол подхода волны, пункт возбуждения, продольный профиль, непродольный профиль, маломощные слои.

Zakharchenko Evgenia Ivanovna

Candidate of Technical Sciences, Manager of Department of Geophysical Methods of Search and Investigation, Kuban State University evgenia-zax@yandex.ru

Zakharchenko Yulia Ivanovna

Senior Teacher of Department of Geophysical Methods of Search and Investigation, Kuban State University

Annotation. Changes of corners ϕ approach of waves along a vertical profile are analyzed when carrying out VSP, their communication with the studied section at Achikulakskaya Square comes to light. The considered data illustrate possibilities of partition of a section in polarization parameters P waves.

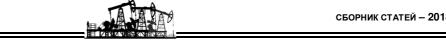
Keywords: polarization of a wave, angle of approach of a wave, point of excitement, longitudinal profile, not longitudinal profile, low-power layers.

сследования ВСП выполнены в одной из скважин в пределах Ачикулакского поднятия. В геологическом строении указанной площади принимает участие широкий комплекс разновозрастных отложений от девона до неогена включительно.

Поляризация колебаний является пространственно-временной характеристикой волнового поля, реагирующей на все неоднородности геологического разреза, в том числе и на нефтегазонасыщение.

Параметрами, определяющими траекторию движения частиц, являются угол φ с вертикалью и азимут ω. Наибольший интерес представляет изучение поляризации Р волны, дающей начало всему волновому процессу и регистрируемой в области, свободной от помех.

На рисунке 1 на графиках $\phi(H)$ отмечены существенные изменения углов ϕ подхода волн вдоль вертикального профиля и выявлена их связь с исследуемым разрезом.


В верхней, наиболее неоднородной части геологического разреза, на графиках $\phi(H)$ наблюдаются значительные скачки углов ϕ , обусловленные особенностями среды. Основные перспективы связаны с более глубокими отложениями, залегающими на глубинах свыше 2000 м.

На продольном профиле (в исследуемом интервале) значения угла ϕ характеризуются относительной стабильностью, варьируют в пределах до18°.

Глубже, вдоль вертикального профиля происходят небольшие изменения, отдельные выбросы достигают 20–22°, они приурочены к пропласткам песчаников в майкопских отложениях. При прохождении Р волны через насыщенные песчаники палеогена наблюдается резкое изменение углов ф, что особенно заметно на графиках, полученных из непродольных пунктов возбуждения (ПВ) (рис. 1).

На кровле известняков верхнего мела наблюдается разрыв в направлениях смещений, а именно, его уменьшение до 2–3°, а затем увеличение до 20° для ближнего ПВ и до 100–120° – для удаленных. В нижнемеловых песчаниках значения угла ф для ПВ 1 уменьшаются до 0°, глубже отмечается рост их значений до 5–8°, причем наиболее интенсивный в альбских отложениях, где I пласт нефтенасыщен.

На продольном профиле, когда первая P волна подходит сверху, наблюдаемые изменения угла ф обусловлены скоростными особенностями разреза.

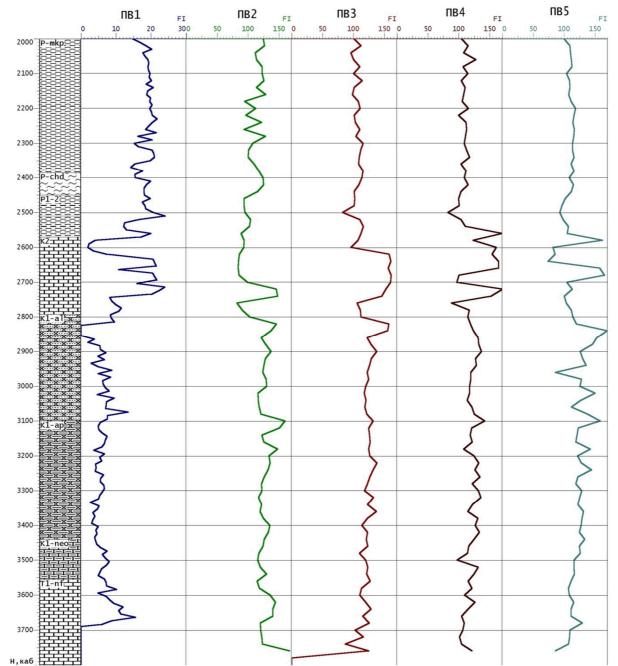


Рисунок 1 – Углы подхода Р волн (Ачикулакская площадь)

Для непродольных вертикальных профилей картина усложняется. Направления смещений в первой Р волне зависят не только от взаимного расположения источника и приемника, но и для градиентных сред – от коэффициента увеличения скорости с глубиной.

Для слоистых сред на границах разреза, где наблюдаются скачки скоростей, кривые $\phi(H)$ претерпевают разрывы. Причем, при переходе от меньшей скорости к большей, направления смещений будут отклоняться от вертикали, а при переходе от большей к меньшей, наоборот приближаться к вертикали.

На участках, примыкающих к границам раздела, где происходит наложение падающих Р и вторичных отраженных PP и PS волн, направления смещений могут отклоняться от указанных закономерностей.

На рисунке 1 представлены графики $\phi(H)$ во временной области для одного продольного и 4-х непродольных ПВ. Верхние 600-700 м характеризуются значениями углов ф, близкими к 90°. Участки вертикального профиля, приуроченные к наиболее резким скоростным границам (2570 м, 3560 м). отмечены изменением угла ф, увеличением их значений до 130–150° и более.

Закономерность изменения углов ϕ подтверждается тем фактом, что графики $\phi(H)$ для разных ПВ коррелируются между собой. Глубины практически всех изломов совпадают или близки для всех пяти ПВ.

В целом, можно отметить, что направления смещений в Р волне обусловлены акустическими неоднородностями разреза и позволяют выделить даже маломощные слои, сопоставимые с шагом наблюдения в скважине, в частности, слои с относительно пониженными и повышенными скоростями.

Углы подхода были также определены для разных частотных составляющих спектра Р волны, что позволяет ранжировать выделение неоднородностей по разрезу, а именно, маломощные слои лучшим образом проявляются на высокочастотных составляющих спектра колебаний.

В исследуемой части разреза контрастность наблюдаемых положительных аномалий углов возрастает по мере увеличения анализируемой частоты от 15 до 60 Гц (рис. 2, 3).

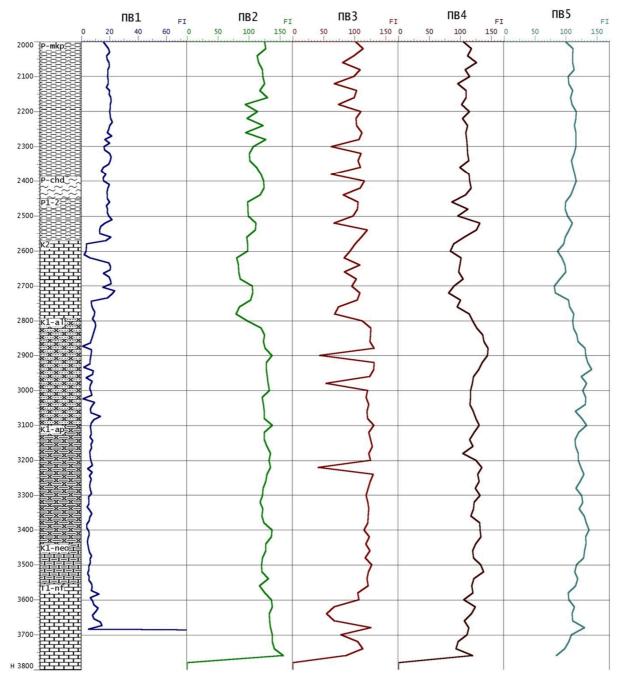


Рисунок 2 – Углы подхода Р волн в частотной области (15 Гц)

В нижней части разреза наряду с положительными, выделены также отрицательные аномалии, причем наиболее четко это проявляется в интервале глубин 2400–3600 м.

Таким образом, рассмотренные данные иллюстрируют принципиальные возможности расчленения разреза по параметрам поляризации Р волны.

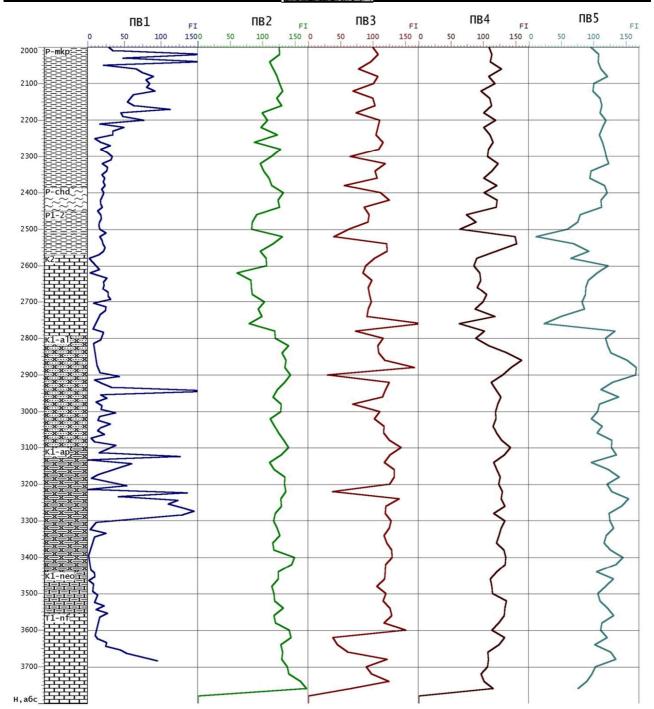


Рисунок 3 – Углы подхода Р волн в частотной области (60 Гц)

Литература:

- 1. Промысловая сейсмика сейсмика околоскважинного пространства / А.Н. Амиров [и др.] // Геология и разведка. – 1980. – № 7.
 - 2. Гальперин Е.И. Вертикальное сейсмическое профилирование. М.: Недра, 1977. 277 с.
 - 3. Гальперин Е.И. Поляризационный метод сейсмических исследований. М. : Недра, 1982. 344 с.
 - 4. Дортман Н.Б. Свойства горных пород и полезных ископаемых. М.: Недра, 1984. 345 с.

References:

- 1. Trade seismicity seismicity of okoloskvazhinny space / A.N. Amirov [etc.] // Geology and investigation. -1980. – № 7.
 - 2. Galperin E.I. Vertical seismic profiling. M.: Nedra, 1977. 277 p.
 - 3. Galperin E.I. Polarizing method of seismic researches. M.: Nedra, 1982. 344 p.
 - 4. Dortman N.B. Properties of rocks and minerals. M.: Nedra, 1984. 345 p.